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Materials and Methods

Unless stated otherwise, reactions were performed in flame-dried glassware under an argon or

nitrogen atmosphere using dry, deoxygenated solvents (distilled or passed over a column of activated

alumina).  Commercially obtained reagents were used as received.  Reaction temperatures were

controlled by an IKAmag temperature modulator.  Thin-layer chromatography (TLC) was performed

using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV fluorescence

quenching, potassium permanganate, or ceric ammonium molybdate staining.  SiliaFlash P60 Academic

Silica gel (particle size 0.040-0.063 mm) was used for flash chromatography. Analytical chiral

supercritical fluid chromatography was performed with a Berger Analytix SFC (Thar Technologies)

using a Chiralcel OD-H column (250 mm x 4.6 mm, 5 µm particle size, 2.0 mL/min flow rate).

Preparatory reverse-phase HPLC was performed on a Waters HPLC with a Waters Delta-Pak column

(100 mm x 2 mm, 15 µm particle size, 1.5 mL/min flow rate) equipped with a guard, employing a

variable gradient of methanol and water.  1H and 13C NMR spectra were recorded on a Varian Inova 500

(at 500 MHz and 125 MHz, respectively) and are reported relative to Me4Si (δ 0.0).  Data for 1H NMR

spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz),

integration).  Data for 13C NMR spectra are reported in terms of chemical shift relative to Me4Si (δ 0.0).

IR spectra were recorded on a Perkin Elmer Paragon 1000 Spectrometer and are reported in frequency of

absorption (cm-1).  High resolution mass spectra were obtained from the Caltech Mass Spectral Facility.

Optical rotations were measured on a Jasco P-1010 polarimeter using a 100 mm path-length cell.
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Experimental Procedures
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Diazabicycle S-1.1,2  A flame-dried 1 L round-bottomed flask equipped with a stir bar was charged

with oxidopyrazinium bromide 13 (12.70 g, 45.2 mmol) and acetonitrile (250 mL).  The suspension was

cooled to –20 °C in a Thermo Scientific NESLAB CB-80 cold bath.  N-methylmorpholine (14.9 mL,

136 mmol) was added via syringe and the mixture was stirred until all solids had dissolved (10 min).  A

solution of acrylamide 14 (14.57 g, 54.1 mmol) in acetonitrile (350 mL) was then added and the reaction

was maintained at –20 °C for 100 h.  The reaction was then diluted cold in EtOAc (400 mL) and washed

with water (2 x 300 mL).  The combined aqueous layers were extracted with EtOAc (2 x 200 mL) and

the combined organic layers were washed with brine (400 mL), dried over MgSO4, and concentrated

under reduced pressure.  The resulting crude orange-yellow solid was filtered through a plug of silica

(CH2Cl2 → 75:25 EtOAc/hexanes) to remove orange baseline material.  Solvent was removed under

reduced pressure to afford an off-white solid.3  The crude solid was dissolved in a minimum amount of

CH2Cl2 (240 mL), and to this solution was added hexanes (300 mL) while swirling until the first crystals

were visible.  The solution was then allowed to stand at 23 °C for 8 h.  Filtration under vacuum provided

diazabicycle S-1 (14.85 g, 70% yield) as a white solid.  The mother liquor was concentrated and the

residue was resubmitted to recrystallization to provide additional diazabicycle S-1 (2.75 g, 13% yield —

83% combined yield) as a white solid.  Rf = 0.38 (50:50 EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) δ

7.53 (br s, 1H), 7.31–7.21 (comp m, 5H), 4.38 (d, J = 1.2 Hz, 1H), 4.32 (d, J = 1.2 Hz, 1H), 3.94 (d, J =

12.8 Hz, 1H), 3.89 (dd, J = 7.8, 4.6 Hz, 1H), 3.74 (d, J = 7.8 Hz, 1H), 3.68 (s, 1H), 3.59 (dd, J = 9.0, 3.9



Allan and Stoltz Supporting Information

S4

Hz, 1H), 3.57 (d, J = 12.8 Hz, 1H), 3.41 (s, 2H), 3.06 (ddd, J = 13.4, 7.8, 3.9 Hz, 1H), 2.15 (dd, J = 13.4,

9.0 Hz, 1H), 2.06 (dd, J = 13.9, 7.8 Hz, 1H), 1.91–1.84 (comp m, 3H), 1.82 (dd, J = 4.2, 3.7 Hz, 1H),

1.43–1.32 (comp m, 2H), 0.92 (s, 3H), 0.75 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.4, 171.3, 139.2,

138.2, 128.8, 128.5, 127.5, 94.0, 65.8, 63.4, 63.3, 53.3, 52.1, 49.2, 48.6, 47.9, 44.8, 38.5, 33.0, 31.3,

26.6, 20.8, 20.0; IR (Neat Film, NaCl) 3199, 2960, 1688, 1654, 1455, 1329, 1213, 1134, 853 cm-1;

HRMS (FAB+) m/z calc’d for C25H32N3O4S [M+H]+: 470.2108, found 470.2136; [α]22
D +100.72° (c 1.0,

CHCl3).
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Ester 12.  A flame-dried 500 mL round-bottomed flask equipped with a stir bar was charged with a

60% w/w suspension of NaH in mineral oil (1.32 g, 33.0 mmol).  Methanol (200 mL) was slowly added

with stirring at 23 °C under argon.  Warning: vigorous gas evolution.  The suspension was stirred until

all solids had dissolved (15 min).  A solution of diazabicycle S-1 (5.07 g, 10.8 mmol) in CH2Cl2 (40 mL)

was then added, and the reaction was maintained at 23 °C for 20 min.  The reaction was quenched by the

addition of saturated aqueous NH4Cl (250 mL) and extracted into EtOAc (3 x 200 mL).  The combined

organic layers were washed with brine (300 mL), dried over MgSO4, and concentrated under reduced

pressure.  The residue was purified via flash chromatography over silica gel (25:75 →  30:70

EtOAc/hexanes) to afford methyl ester 12 (2.75 g, 89% yield) as a white solid and sultam S-2 (1.74 g,

75% yield) as a white crystalline solid.  Rf = 0.45 (50:50 EtOAc/hexanes); 1H NMR (500 MHz, CDCl3)

δ 8.35 (br s, 1H), 7.35–7.29 (comp m, 4H), 7.28–7.24 (m, 1H), 4.33 (d, J = 1.2 Hz, 1H), 4.19 (d, J = 1.2,
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1H), 4.02 (s, 1H), 3.82 (d, J = 13.4 Hz, 1H), 3.74 (s, 3H), 3.73 (d, J = 13.4 Hz, 1H), 3.62 (d, J = 7.3 Hz,

1H), 3.02 (dd, J = 9.8, 5.6 Hz, 1H), 2.66 (ddd, J = 13.2, 7.3, 5.6 Hz, 1H), (dd, J = 13.2, 9.8 Hz, 1H); 13C

NMR (125 MHz, CDCl3) δ 173.6, 171.6, 141.3, 137.9, 128.7, 128.6, 127.6, 91.7, 63.3, 62.5, 52.6, 52.5,

48.4, 33.5; IR (Neat Film, NaCl) 3202, 2953, 1737, 1684, 1656, 1454, 1318, 1200, 850 cm-1; HRMS

(FAB+) m/z calc’d for C16H19N2O3 [M+H]+: 287.1396, found 287.1390; [α]26
D –23.66° (c 1.0, CHCl3).

Analytical chiral SFC assay: Chiralcel OD-H column, 10:90 2-propanol:CO2, 2.0 mL/min, λ = 254 nm,

40 °C isothermal method over 20 min.  Racemic 12: tfast = 11.31 min ((–)-12, 49.9%), tslow = 11.89 min

((+)-12, 50.1%).  Enantio-enriched 12: tfast = 11.39 min ((–)-12, >99%) (the trace corresponding to (+)-

12 was below the threshold of detection).
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Imide 16.   A flame-dried 500 mL 3-neck round-bottomed flask equipped with a stir bar and a reflux

condenser was charged with benzyloxyacetic acid (8.76 g, 52.8 mmol) and CH2Cl2 (140 mL).  To this

solution was added oxalyl chloride (4.53 mL, 51.9 mmol) and N,N-dimethylformamide (0.205 mL, 2.65

mmol).  Warning: vigorous gas evolution.  The reaction was maintained at 23 °C until bubbling had

ceased (45 min).  A solution of ester 12 (5.00 g, 17.5 mmol), triethylamine (7.9 mL, 56.7 mmol), and 4-

dimethylaminopyridine (0.325 g, 2.66 mmol) in CH2Cl2 (35 mL) was then added dropwise via syringe

over 5 min.  The reaction was heated to 40 °C and maintained for 30 h.  After cooling to room

temperature, the solution was diluted in CH2Cl2 (200 mL) and washed with saturated aqueous NH4Cl

(200 mL), water (200 mL), and brine (200 mL).  The organic layer was dried over MgSO4 and
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concentrated under reduced pressure.  The crude orange residue was purified via flash chromatography

over silica gel (15:85 → 25:75 EtOAc/hexanes) to afford imide 16 (7.06 g, 93% yield) as a colorless oil.

Rf = 0.47 (30:70 EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) δ 7.41–7.34 (comp m, 4H), 7.34–7.29

(comp m, 4H), 7.29–7.24 (comp m, 2H), 5.25 (d, J = 1.2 Hz, 1H), 4.65 (s, 2H), 4.59 (d, J = 1.2 Hz, 1H),

4.56 (d, J = 16.8 Hz, 1H), 4.49 (d, J = 16.8 Hz, 1H), 4.04 (s, 1H), 3.77 (d, J = 4.9 Hz, 2H), 3.74 (s, 3H),

3.68 (d, J = 7.1 Hz, 1H), 3.04 (dd, J = 9.8, 6.0 Hz, 1H), 2.62 (ddd, J = 13.4, 7.1, 6.0 Hz, 1H), 2.26 (dd, J

= 13.4, 9.8 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 175.9, 173.4, 172.1, 139.2, 137.4, 137.2, 128.8,

128.7, 128.6, 128.4, 128.3, 127.7, 99.8, 74.0, 72.9, 65.2, 64.7, 52.7, 52.7, 47.5, 32.7; IR (Neat Film,

NaCl) 2952, 1736, 1634, 1454, 1200, 1117, 1028 cm-1; HRMS (FAB+) m/z calc’d for C25H27N2O5

[M+H]+: 435.1920, found 435.1930; [α]21
D –51.53° (c 1.0, CHCl3).

Y(OTf)3, MeOH

CH2Cl2, reflux

(69% yield)
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N-acyl enamine 11.  A flame-dried 500 mL 3-neck round-bottomed flask equipped with a stir bar

and reflux condenser was charged with Y(OTf)3 (2.59 g, 4.83 mmol) and CH2Cl2 (120 mL).  The

suspension was heated to 40 °C and a solution of imide 16 (2.05 g, 4.72 mmol) in CH2Cl2 (35 mL) was

added.  The mixture was maintained at 40 °C for 1 h, at which point MeOH (1.35 mL, 33.3 mmol) was

added via syringe.  The suspension immediately cleared and stirring was continued at 40 °C for an

additional 30 min.  After cooling to room temperature, the reaction was concentrated to a cloudy yellow

oil containing yttrium salts, which was suspended in a minimum amount of CH2Cl2 (12 mL) and filtered

through a plug of Celite.  The filtrate was concentrated under reduced pressure and purified via flash

chromatography over silica gel (25:75 → 40:60 EtOAc/hexanes) to yield N-acyl enamine 11 (1.52 g,
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69% yield) as a pale yellow oil.  Rf = 0.70 (50:50 EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) δ 9.18

(br s, 1H), 7.43 (d, J = 6.6 Hz, 2H), 7.39 (dd, J = 7.2, 6.6 Hz, 2H), 7.34, (tt, J = 7.2, 1.5 Hz, 1H),

7.29–7.22 (comp m, 5H), 6.01 (s, 1H), 4.76 (d, J = 1.2 Hz, 1H), 4.75 (d, J = 12.4 Hz, 1H), 4.71 (d, J =

12.4 Hz, 1H), 4.06 (s, 2H), 3.97 (d, J = 13.7 Hz, 1H), 3.69 (s, 3H), 3.65 (d, J = 9.0 Hz, 1H), 3.60 (d, J =

13.7 Hz, 1H), 3.56 (dd, J = 9.5, 4.2 Hz, 1H), 3.40 (s, 3H), 3.09 (dd, J = 9.5, 8.8 Hz, 1H), 2.33 (dt, J =

12.9, 9.8 Hz, 1H), 2.13 (ddd, J = 12.7, 8.3, 4.2 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 174.4, 173.2,

169.5, 137.4, 137.3, 136.8, 129.7, 128.8, 128.5, 128.3, 128.2, 127.8, 101.7, 73.7, 72.2, 70.0, 63.2, 56.4,

52.4, 52.0, 47.6, 33.1; IR (Neat Film, NaCl) 3316, 2951, 1737, 1696, 1512, 1454, 1436, 1201, 1174,

1028 cm-1; HRMS (ES+) m/z calc’d for C26H31N2O6 [M+H]+: 467.2182, found 467.2188; [α]25
D –29.78°

(c 1.0, CHCl3).
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Isoquinoline 9.  A flame-dried 500 mL 3-neck round-bottomed flask equipped with a stir bar and

reflux condenser was charged with tetra-n-butylammonium difluorotriphenylsilicate (5.45 g, 10.1 mmol)

and THF (120 mL).  A solution of N-acyl enamine 11 (2.35 g, 5.04 mmol) in THF (50 mL) was added at

23 °C, followed by silylaryl triflate 174 (3.31 g, 10.1 mmol).  The reaction was heated to 40 °C and

maintained for 15 h, then cooled to room temperature and concentrated under reduced pressure.  The

yellow residue was purified via flash chromatography over silica gel (15:85 → 25:75 EtOAc/hexanes) to

afford isoquinoline 9 (1.68 g, 60% yield) as a pale yellow oil.  Rf = 0.65 (50:50 EtOAc/hexanes); 1H

NMR (500 MHz, CDCl3) δ 8.06 (s, 1H), 7.55 (dd, J = 8.1, 7.8 Hz, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.34

(dd, J = 7.8, 7.1 Hz, 2H), 7.32–7.25 (comp m, 4H), 7.22 (dd, J = 7.6, 7.1 Hz, 2H), 7.15 (t, J = 7.3 Hz,
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1H), 6.90 (d, J = 7.8 Hz, 1H), 5.32 (d, J = 12.5 Hz, 1H), 5.29 (d, J = 12.5 Hz, 1H), 4.78 (d, J = 11.7 Hz,

1H), 4.68 (d, J = 11.7 Hz, 1H), 4.52 (d, J = 6.1 Hz, 1H), 4.04 (d, J = 13.4 Hz, 1H), 3.96 (s, 3H), 3.79 (d,

J = 13.4 Hz, 1H), 3.77 (dd, J = 9.5, 7.6 Hz, 1H), 3.61 (s, 3H), 3.51 (s, 3H), 3.31 (dt, J = 8.3, 6.1 Hz, 1H),

2.44 (ddd, J = 12.7, 8.3, 6.1 Hz, 1H), 2.26 (ddd, J = 12.7, 8.1, 7.8 Hz, 1H); 13C NMR (125 MHz, CDCl3)

δ 174.8, 174.5, 157.7, 156.4, 154.2, 140.0, 139.2, 137.9, 130.4, 129.8, 128.5, 128.4, 128.2, 127.6, 127.4,

120.3, 118.0, 106.7, 75.2, 73.0, 72.7, 65.3, 58.1, 55.9, 52.2, 51.9, 50.6, 45.0, 32.9; IR (Neat Film, NaCl)

2950, 1736, 1733, 1619, 1566, 1454, 1361, 1201, 1171 cm-1; HRMS (FAB+) m/z calc’d for C33H35N2O6

[M+H]+: 555.2490, found 555.2497; [α]24
D –8.21° (c 1.0, CHCl3).
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Tetrahydroisoquinolines 19a and 19b.  A flame-dried 10 mL round-bottomed flask equipped with

a stir bar was charged with 10% w/w palladium on carbon (0.019 g, 0.018 mmol) followed by a solution

of isoquinoline 9 (0.100 g, 0.180 mmol) in THF (3.6 mL). The flask was purged with hydrogen and a

hydrogen balloon was attached.  The reaction was maintained at 23 °C for 6 h, then filtered through a

plug of silica with 30:70 EtOAc/hexanes.  Removal of the solvents under vacuum provided a 3.3:1

mixture of dihydroisoquinolines 18a and 18b5 (not shown) (0.082 g), which was carried on without

further purification.  A flame-dried 5 mL round-bottomed flask equipped with a stir bar was charged

with dihydroisoquinolines 18a and 18b (0.082 g, 0.148 mmol) in methanol (2.9 mL), and the solution

was cooled to 0 °C.  Concentrated hydrochloric acid (0.018 mL, 0.216 mmol) was added via syringe

followed by NaBH3CN (0.046 g, 0.732 mmol) added in portions, allowing for bubbling to subside.  The

reaction was maintained at 0 °C for 15 min, and then quenched with saturated aqueous NaHCO3 (1.5
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mL) followed by CH2Cl2 (1.5 mL).  The cloudy white mixture was vigorously stirred for 5 min, then 0.2

N NaOH was added dropwise until the mixture cleared (6 drops).  The biphasic mixture was extracted

with CH2Cl2 (3 x 10 mL) and the combined organic phases were washed with brine (15 mL), dried over

MgSO4, and concentrated under reduced pressure.  The yellow residue was purified via flash

chromatography over silica gel (15:85 EtOAc/hexanes) to yield tetrahydroisoquinoline 19a (0.055 g,

55% yield over 2 steps) as a clear colorless oil and tetrahydroisoquinoline 19b (0.017 g, 17% yield over

2 steps) as a clear colorless oil.

Tetrahydroisoquinoline 19a.  Rf = 0.38 (30:70 EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) δ

7.39 (d, J = 7.3 Hz, 2H), 7.36–7.29 (comp m, 4H), 7.29–7.23 (comp m, 3H), 7.21 (dd, J = 7.3, 7.1 Hz,

1H), 7.11 (t, J = 7.8 Hz, 1H), 6.72 (d, J = 7.6 Hz, 1H), 6.68 (d, J = 8.3 Hz, 1H), 4.66 (d, J = 12.2 Hz,

1H), 4.59 (d, J = 12.2 Hz, 1H), 4.47 (d, J = 7.1 Hz, 1H), 4.17 (dd, J = 8.8, 2.2 Hz, 1H), 3.99 (d, J = 13.9

Hz, 1H), 3.81 (d, J = 13.9 Hz, 1H), 3.76 (s, 3H), 3.71 (s, 3H), 3.63 (dd, J = 8.3, 7.8 Hz, 1H), 3.46–3.33

(comp m, 4H), 3.38 (s, 3H), 2.98 (ddd, J = 11.2, 2.9, 2.7 Hz, 1H), 2.65 (dd, J = 14.7, 11.2 Hz, 1H), 2.55

(dd, J = 14.7, 2.7 Hz, 1H), 2.35 (ddd, J = 12.5, 7.1, 3.8 Hz, 1H), 2.27 (ddd, J = 12.7, 9.0, 8.8 Hz, 1H);

13C NMR (125 MHz, CDCl3) δ 176.1, 174.4, 157.1, 139.4, 139.1, 138.7, 129.3, 128.4, 128.3, 127.8,

127.5, 127.4, 127.1, 124.4, 121.8, 108.2, 75.2, 73.1, 72.0, 66.8, 59.1, 55.3, 53.6, 53.4, 52.3, 51.8, 45.0,

42.9, 34.5, 34.0; IR (Neat Film, NaCl) 2949, 1734, 1731, 1584, 1470, 1255, 1198, 1170, 1074 cm-1;

HRMS (FAB+) m/z calc’d for C33H39N2O6 [M+H]+: 559.2803, found 559.2814; [α]23
D –52.71° (c 1.0,

CHCl3).

Tetrahydroisoquinoline 19b.  Rf = 0.18 (30:70 EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) δ

7.49 (d, J = 7.6 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.38–7.34 (comp m, 2H), 7.30 (t, J = 7.3 Hz, 1H),

7.19–7.14 (comp m, 3H), 7.12 (t, J = 7.8 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H),

4.72 (d, J = 12.2 Hz, 1H), 4.68 (d, J = 12.2 Hz, 1H), 4.62 (dd, J = 9.5, 2.2 Hz, 1H), 4.03 (d, J = 13.4 Hz,
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1H), 3.79 (d, J = 13.4 Hz, 1H), 3.76 (s, 3H), 3.70 (s, 3H), 3.67–3.56 (comp m, 3H), 3.60 (d, J = 9.3 Hz,

1H), 3.39–3.32 (comp m, 2H), 3.38 (s, 3H), 3.30 (app dt, J = 8.1, 7.1 Hz, 1H), 2.60 (d, J = 7.6 Hz, 2H),

2.35–2.21 (comp m, 2H); 13C NMR (125 MHz, CDCl3) δ 176.2, 174.3, 156.6, 139.2, 138.2, 136.9,

129.8, 128.5, 128.3, 127.8, 127.6, 127.4, 123.8, 121.6, 107.7, 72.8, 71.5, 69.4, 66.8, 59.2, 55.4, 52.3,

51.8, 47.4, 42.7, 34.1, 32.4; IR (Neat Film, NaCl) 2949, 1733, 1588, 1454, 1257, 1198, 1171, 1074 cm-1;

HRMS (FAB+) m/z calc’d for C33H39N2O6 [M+H]+: 559.2803, found 559.2825; [α]21
D –17.00° (c 0.5,

CHCl3).
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Lactam 20.  A flame-dried 20 mL scintillation vial equipped with a stir bar was charged with

tetrahydroisoquinoline 19a (0.075 g, 0.135 mmol) in toluene (5.4 mL).  The vial was sealed with a teflon

cap and the reaction was heated to 110 °C for 24 h.  The reaction was then cooled to room temperature

and the solvent was removed under reduced pressure.  Purification via flash chromatography over silica

gel (25:75 EtOAc/hexanes) provided tetracyclic lactam 20 (0.071 g, 99% yield) as a pale yellow oil.  Rf

= 0.61 (50:50 EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) δ 7.34–7.22 (comp m, 9H), 7.21 (t, J = 8.0

Hz, 1H), 7.07 (dd, J = 7.6, 2.4 Hz, 1H), 6.79 (d, J = 8.3 Hz, 1H), 6.74 (d, J = 7.3 Hz, 1H), 5.64 (t, J =

2.2 Hz, 1H), 4.32 (d, J = 12.0 Hz, 1H), 4.29 (d, J = 12.0 Hz, 1H), 4.25 (dd, J = 9.5, 3.2 Hz, 1H), 3.79 (s,

3H), 3.76 (dd, J = 12.4, 2.2 Hz, 1H), 3.73 (s, 3H), 3.72 (br s, 1H), 3.68 (d, J = 6.4 Hz, 1H), 3.60 (br s,

1H), 3.48 (dd, J = 9.5, 2.0 Hz, 1H), 3.25 (app t, J = 8.1 Hz, 1H), 3.12 (app t, J = 13.4 Hz, 1H), 2.66 (app

dt, J = 6.6, 6.6 Hz, 1H), 2.44 (dd, J = 14.2, 2.2 Hz, 1H), 2.21 (dd, J = 13.2, 9.5 Hz, 1H); 13C NMR (125

MHz, CDCl3) δ 175.5, 170.8, 155.9, 138.7, 138.6, 138.3, 128.9, 128.6, 128.5, 128.1, 127.8, 127.6,



Allan and Stoltz Supporting Information

S11

127.5, 123.2, 119.9, 108.9, 73.5, 70.9, 66.6, 65.2, 57.1, 55.5, 54.6, 52.4, 49.7, 41.2, 34.5, 32.4; IR (Neat

Film, NaCl) 2950, 1735, 1654, 1474, 1437, 1265, 1208, 1099, 1069 cm-1; HRMS (FAB+) m/z calc’d for

C32H35N2O5 [M+H]+: 527.2540, found 527.2543; [α]24
D –85.60° (c 1.0, CHCl3).

OMe

N
N

Bn

O

20

MeO

H
 aq HCHO

Pd(OH)2/C (50 mol%)
H2 (1 atm)

MeOH, 23 °C

(80% yield)

OMe

N
N

Me

O

21

MeO
OH

H

OO
OBn

N-Methyl amine 21.  A flame-dried 1 dram vial equipped with a stir bar and a septum-bearing

screw cap was charged with moist 20% w/w Pd(OH)2 on carbon (≤50% water) (0.062 g, 0.044 mmol)

followed by a solution of lactam 20 (0.0435 g, 0.083 mmol) in MeOH (0.85 mL).  The vial was purged

with hydrogen and a hydrogen balloon was attached.  The reaction was maintained at 23 °C for 20 h, at

which point a 37% w/w aqueous solution of formaldehyde (0.310 mL, 4.14 mmol) was added via

syringe.  The reaction was maintained at 23 °C under hydrogen for an additional 20 h, and then filtered

through a plug of Celite eluting with 10:90 MeOH/CH2Cl2.  The solvent was removed under reduced

pressure and the residue was purified via flash chromatography over silica (CH2Cl2 →  2:98

MeOH/CH2Cl2) to afford N-methyl amine 21 (0.024 g, 80% yield) as a solid white foam.  Rf = 0.28

(10:90 MeOH/CH2Cl2); 1H NMR (500 MHz, CDCl3) δ 7.21 (t, J = 7.8 Hz, 1H), 6.81 (d, J = 8.3 Hz, 1H),

6.78 (d, J = 7.6 Hz, 1H), 5.72 (dd, J = 5.6, 3.2 Hz, 1H), 3.91 (ddd, J = 11.3, 6.2, 2.9 Hz, 1H), 3.84 (s,

3H), 3.83 (app dt, J = 12.4, 2.4 Hz, 1H), 3.76 (s, 3H), 3.66 (dd, J = 1.5, 1.2 Hz, 1H), 3.60 (d, J = 6.4 Hz,

1H), 3.55 (ddd, J = 11.0, 5.6, 3.4 Hz, 1H), 3.31 (dd, J = 9.5, 6.6 Hz, 1H), 3.03 (dd, J = 5.6, 4.6 Hz, 1H),

2.96 (dd, J = 14.6, 12.7 Hz, 1H), 2.66 (app dt, J = 13.2, 6.6 Hz, 1H), 2.62 (dd, J = 14.6, 2.2 Hz, 1H),

2.48 (s, 3H), 2.39 (dd, J = 13.2, 9.5 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 174.9, 173.5, 156.1, 137.5,

128.8, 121.8, 120.1, 109.3, 67.4, 67.3, 66.4, 55.7, 55.4, 52.7, 52.0, 41.6, 37.3, 34.8, 32.2; IR (Neat Film,
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NaCl) 3404, 2951, 1733, 1638, 1474, 1436, 1264, 1204, 1064, 915 cm-1; HRMS (EI+) m/z calc’d for

C19H24N2O5 [M]+: 360.1685, found 360.1701; [α]22
D –104.64° (c 1.0, CHCl3).

OMe

N
N

Me

O

21

MeO

H 1. LiOH•H2O
    2:1 THF / H2O, 23  °C

2. Li, NH3 (l), THF
    –78 °C → –30 °C;
    then 1.0 N HCl

    (81% yield, 2 steps)

OH

N
N

Me

O

Quinocarcin (1)

MeO

H

O
OH

O

Quinocarcin (1).6  A flame-dried 15 mL round-bottomed flask equipped with a stir bar was charged

with N-methyl amine 21 (36.4 mg, 0.101 mmol) in THF (2.7 mL).  A solution of LiOH·H2O (0.0423 g,

1.01 mmol) in H2O (1.35 mL) was added via syringe and the mixture was vigorously stirred at 23 °C for

3 h.  Ethyl acetate (4 mL) was added and the solution was neutralized to pH 7 with 2.0 N HCl (4 drops).

The biphasic mixture was transferred to a 50 mL round-bottomed flask and the solvents were removed

under reduced pressure.  The resulting cloudy white residue was dried under high vacuum for 6 h, and

then suspended in THF (7 mL) and cooled to –78 °C.  Ammonia (14 mL) was condensed into the flask

using a cold finger at –78 °C and lithium metal (0.0401 g, 5.78 mmol) was added.  The mixture turned

dark blue and was vigorously stirred for 2 min.  The –78 °C cold bath was replaced with a –30 °C cold

bath (MeCN/CO2) and stirring was continued for 15 min.  The reaction was quenched by the addition of

methanol (5 mL) down the side of the cold finger and stirred for an additional 5 min.  Solid NH4Cl

(0.960 g, 17.9 mmol) was added in portions, the cold bath was removed, and the ammonia was

evaporated under a stream of argon at room temperature.  Water (10 mL) was added and the mixture

was neutralized to pH 7 with 1.0 N HCl (10 mL).  The solvents were removed under reduced pressure,

and the resulting solids were dissolved in a minimum amount of water (1 mL) and filtered through a 5 g

Sep-Pak C18 plug (H2O → 50:50 MeOH/H2O) to remove salts.  The crude residue was purified via semi-

preparative reverse-phase HPLC (20:80 → 70:30 MeOH/H2O, tR = 33 min) to afford quinocarcin (1)
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(0.0269 g, 81% yield over 2 steps) as a white solid.  1H NMR (500 MHz, CD3OD) δ 7.17 (t, J = 7.8 Hz,

1H), 6.85 (d, J = 8.3 Hz, 1H), 6.76 (d, J = 7.6 Hz, 1H), 4.57 (d, J = 2.9 Hz, 1H), 4.55 (dd, J = 7.3, 2.9

Hz, 1H), 4.07 (br s, 2H), 3.82 (s, 3H), 3.68 (dd, J = 10.7, 2.9 Hz, 1H), 3.43–3.33 (comp m, 2H), 3.39

(dd, J = 10.7, 7.3 Hz, 1H), 2.79–2.74 (m, 1H), 2.77 (s, 3H), 2.64 (dd, J = 14.6, 2.4 Hz, 1H), 2.64–2.60

(m, 1H), 2.46 (dd, J = 13.9, 10.5 Hz, 1H); 13C NMR (125 MHz, CD3OD) δ 179.5, 157.2, 137.6, 129.1,

124.0, 121.3, 110.0, 92.6, 73.2, 68.2, 66.9, 56.3, 55.9, 55.7, 42.8, 40.7, 32.9, 28.3; IR (Neat Film, NaCl)

3370, 2941, 1590, 1474, 1383, 1264, 1054 cm-1; HRMS (FAB+) m/z calc’d for C18H23N2O4 [M+H]+:

331.1652, found 331.1669; [α]22
D –31.57° (c 0.28, H2O).  The analytical data for the synthetic sample

matched those for the natural sample in all respects.7
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Figure 1.3  13C NMR (125 MHz, CDCl3) of diazabicycle S-1.

Figure 1.2.  Infrared spectrum (thin film/NaCl) of diazabicycle S-1.
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Figure 2.3.  13C NMR (125 MHz, CDCl3) of methyl ester 12.

Figure 2.2.  Infrared spectrum (thin film/NaCl) of methyl ester 12.
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Figure 2.4.  Chiral SFC traces for racemic methyl ester 12.
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Figure 2.5.  Chiral SFC trace for enantioenriched methyl ester (–)-12 (>99% ee).
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Figure 3.3.  13C NMR (125 MHz, CDCl3) of imide 16.

Figure 3.2.  Infrared spectrum (thin film/NaCl) of imide 16.
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Figure 4.3.  13C NMR (125 MHz, CDCl3) of N-acyl enamine 11.

Figure 4.2.  Infrared spectrum (thin film/NaCl) of N-acyl enamine 11.
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Figure 5.3.  13C NMR (125 MHz, CDCl3) of isoquinoline 9.

Figure 5.2.  Infrared spectrum (thin film/NaCl) of isoquinoline 9.
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Figure 6.3.  13C NMR (125 MHz, CDCl3) of tetrahydroisoquinoline 19a.

Figure 6.2.  Infrared spectrum (thin film/NaCl) of tetrahydroisoquinoline 19a.
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Figure 7.3.  13C NMR (125 MHz, CDCl3) of tetrahydroisoquinoline 19b.

Figure 7.2.  Infrared spectrum (thin film/NaCl) of tetrahydroisoquinoline 19b.
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Figure 8.3.  13C NMR (125 MHz, CDCl3) of lactam 20.

Figure 8.2.  Infrared spectrum (thin film/NaCl) of lactam 20.
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Figure 9.3.  13C NMR (125 MHz, CDCl3) of N-methyl amine 21.

Figure 9.2.  Infrared spectrum (thin film/NaCl) of N-methyl amine 21.
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Figure 10.3.  Infrared spectrum (thin film/NaCl) of quinocarcin (1).

Figure 10.4.  13C NMR (125 MHz, CD3OD) of quinocarcin (1).
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Supplemental Table 1.  Comparison of 1H NMR data for synthetic and natural quinocarcin.

Synthetic (ppm) Multiplicity Natural7 (ppm) Multiplicity

7.17 t 7.16 t
6.85 d 6.84 d
6.76 d 6.76 d
4.57 d 4.57 d
4.55 dd 4.54 dd
4.07 br s (2H) 4.08 br s (2H)
3.82 s (3H) 3.82 s (3H)
3.68 dd 3.67 dd

3.43–3.33 comp m (2H) 3.41–3.35 m (3H)
3.39 dd

2.79–2.74 m 2.79–2.74 m
2.77 s (3H) 2.77 s (3H)
2.64 dd 2.64 dd

2.64–2.60 m 2.63–2.59 m
2.46 dd 2.47 dd

Supplemental Table 2.  Comparison of 13C NMR data for synthetic and natural quinocarcin.8

Synthetic (ppm)a Natural7 (ppm)b

179.5 174.9
157.2 157.2
137.6 137.0
129.1 129.1
124.0 123.8
121.3 121.3
110.0 110.0
92.6 92.1
73.2 72.3
68.2 67.9
66.9 66.8
56.3 56.3
55.9 55.9
55.7 53.4
42.8 40.6
40.7 40.3
32.9 32.5
28.3 27.3

a 13C NMR data measured at 125 MHz in CD3OD.
b 13C NMR data measured at 100 MHz in CD3OD.
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