Supporting Information

Synthesis of Carboxylic Acid and Dimer Ester Surrogates to Constrain the Abundance and Distribution of Molecular Products in α-Pinene and β-Pinene Secondary Organic Aerosol

Christopher M. Kenseth,[†] Nicholas J. Hafeman,[†] Yuanlong Huang,[‡] Nathan F. Dalleska,[‡] Brian M. Stoltz,[†] and John H. Seinfeld^{*,†,§}

[†]Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125

[‡]Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125

[§]Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125

Table of Contents

S1. Adjustment of Mass Fractions in Published LC/(-)ESI-MS Studies of SOA from	
α-Pinene Ozonolysis	S2
S2. Tables S1–S4	S3
S3. Figures S1–S3	S9
S4. Synthetic Procedures and Characterization Data	S11
S5. NMR and IR Spectra	S20
S6. References	S42

*Corresponding author. E-mail: seinfeld@caltech.edu

S1. Adjustment of Mass Fractions in Published LC/(–)ESI-MS Studies of SOA from α-Pinene Ozonolysis

Zhang et al. (2015).¹ For the mass fractions of identified monomers and dimers reported in Zhang et al.,¹ Fig. 3 ($MF_{reported}$), calculated using compound-specific, computationally derived (–)ESI efficiencies normalized to that of *cis*-pinonic acid (*RIE*; Zhang et al.,¹ *SI Appendix*, Table S2),^a adjusted mass fractions ($MF_{adjusted}$) were obtained as follows:

$$MF_{\text{adjusted}} = MF_{\text{reported}} \cdot \frac{RIE}{\left(\frac{(-)ESI_{\text{surrogate}}}{(-)ESI_{\text{cis-pinonic}}}\right)}$$
(S1)

where the bracketed term is the measured (–)ESI efficiency of the most representative surrogate (carboxylic acid **1–3** or dimer ester **4–6**) normalized to that of *cis*-pinonic acid (Figure 2). The calculation for *cis*-pinic acid (C₉H₁₄O₄) is shown as an example: $5.3\% = 21\% \cdot \frac{0.73}{2.91}$.

Kristensen et al. (2017).² Mass fractions of identified monomers reported in Kristensen et al.,² Table 3S were quantified using representative surrogates [i.e., *cis*-pinonic acid, *cis*-pinic acid, pimelic acid, terpenylic acid, diaterpenylic acid acetate (DTAA), and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA)] and, therefore, were not adjusted. For the mass fractions of identified dimers reported in Kristensen et al.,² Table 4S ($MF_{reported}$), calculated using "an average standard calibration curve of *cis*-pinic acid and DTAA" given that "most of the suggested molecular structures for the identified dimer esters have moieties resembling *cis*-pinic acid and DTAA,"³ adjusted mass fractions ($MF_{adjusted}$) were obtained as follows:

$$MF_{\text{adjusted}} = MF_{\text{reported}} \cdot \frac{(-)ESI_{cis-\text{pinic}}}{(-)ESI_{\text{dimer}}}$$
(S2)

where (–)*ESI_{cis-pinic}* is the measured (–)ESI efficiency of *cis-*pinic acid (Table S2; assumes *cis*pinic acid and DTAA have similar (–)ESI efficiencies as both are pinene-derived dicarboxylic acids) and (–)*ESI_{dimer}* is the measured (–)ESI efficiency of the most representative surrogate dimer (dimer ester **4–6**; Table S2). The calculation for pinonyl-pinyl ester (C₁₉H₂₈O₇) is shown as an example: $0.08\% = 0.94\% \cdot \frac{2076 \,\mu\text{M}^{-1}}{25418 \,\mu\text{M}^{-1}}$.

^aFor *RIE* estimates, "molecules that have two or more equivalent sites for deprotonation (e.g., dicarboxylic acids) were not taken into account" (Zhang et al.,¹ *SI Appendix*, S3.2.2), leading to systematic underprediction of *RIE* for polycarboxylic monomers and dimers, given the dependence of (–)ESI efficiency on the number of ionizable carboxyl groups.

S2. Tables S1–S4

VOC	Eve	[VOC]₀	[O ₃] ₀	₃] ₀ [(NH ₄) ₂ SO ₄] ₀	[SOA]	Bulk	Bulk	SOA Mass Fraction (%) ^{b,d}			
VUC	Exp.	(ppb)	(ppb)	$(\mu m^3 cm^{-3})$	(µg m⁻³) ^ь	O:Cp	$\overline{OS}_{C}^{b,c}$	Monomer	Dimer	Total	
	1	97	150	86	264	0.41	-0.88	20.4	1.2	21.6	
α -Pinene	2	105	150	213	207	0.42	-0.86	22.0	1.3	23.3	
α-rinene	3	110	150	203	215	0.42	-0.86	21.9	1.3	23.2	
	4	106	150	223	243	0.40	-0.89	17.7	1.1	18.8	
	5	96	150	137	93	0.38	-0.90	14.2	2.6	16.8	
	6	95	150	192	75	0.38	-0.90	18.0	3.5	21.5	
β -Pinene	7	93	150	243	57	0.35	-0.92	18.4	4.1	22.4	
	8	95	150	283	77	0.36	-0.93	15.3	3.4	18.8	
	9	95	150	211	87	0.35	-0.94	12.0	2.7	14.8	

Table S1. Initial conditions and SOA properties for α -pinene and β -pinene ozonolysis experiments in the CTEC.^a

^a~5-h duration; T₀ = 295 ± 2 K; P = 1 atm; RH < 5%; [NO_x]₀ < 0.5 ppb; no OH scavenger. ^bCalculated for suspended SOA after ~5 h of ozonolysis (see Figure 1). ^cAverage carbon oxidation state (\overline{OS}_{C} = 2 O:C – H:C). ^dMethod uncertainty is estimated to be ±23% (relative). See Experimental for details.

Compound	Observed <i>m/z</i> (–)	Molecular Formula	t _R (min)	Molecular Structure	(–)ESI Efficiency (µM ⁻¹)	Concentration Range (µM)	LOD (nM) ^b	LOQ (nM) ^c
1	183.1024	$C_{10}H_{16}O_{3}$	5.09	он	713 ± 7	0.200–5.00	7.2	24
2	185.0815	$C_9H_{14}O_4$	4.45	но	2076 ± 17	0.200–5.00	2.4	8.1
3	185.1179	$C_{10}H_{18}O_{3}$	4.72	он	328 ± 4	0.200–3.00	12	39
4	353.1967	$C_{19}H_{30}O_6$	6.71	но	25418 ± 237	0.200–1.00	0.53	1.8
5	351.2178	$C_{20}H_{32}O_5$	7.46	Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц	13235 ± 209	0.200–2.00	0.80	2.7
6	353.2332	$C_{20}H_{34}O_5$	7.05	он Стран	15079 ± 172	0.200–2.00	0.60	2.0

Table S2. UPLC/(-)ESI-Q-TOF-MS analytical figures of merit for carboxylic acids 1-3 and dimer esters 4-6.ª

^aWeighted (1/X), linear ($R^2 > 0.998$) calibration curves were generated from triplicate measurements of equimolar aqueous solutions of carboxylic acids 1–3 and dimer esters 4–6. Intercepts of calibration curves were not statistically different from zero.

^bLimit of detection (LOD); calculated as three times the standard deviation of the blank $(3\sigma_{blank})$.

^cLimit of quantitation (LOQ); calculated as ten times the standard deviation of the blank ($10\sigma_{blank}$).

									SOA Mass F	raction (%) ^{d,}
Carbon Number	Observed <i>m/z</i> (–)	Molecular Formula	Error (ppm)	O:C	$\overline{OS}_{C}{}^{a}$	logC* (µg m ⁻³) ^ь	t _R (min)	(–)ESI Surrogate ^c	α -Pinene	β -Pinene
<u> </u>	173.0456	$C_7H_{10}O_5$	3.5	0.71	0.00	-0.5	2.21	2	0.07 ± 0.01	0.03 ± 0.01
C ₇	175.0616	$C_7H_{12}O_5$	5.7	0.71	-0.29	-0.5	2.46	2	0.05 ± 0.04	0.05 ± 0.00
	185.0451	$C_8H_{10}O_5$	0.5	0.63	0.00	-0.7	3.84	2	0.07 ± 0.01	0.04 ± 0.01
	171.0669	$C_8H_{12}O_4$	7.0	0.50	-0.50	1.2	4.07	1 ^{†,‡,§,¶}	$\textbf{3.36} \pm \textbf{0.59}$	3.27 ± 0.63
							4.20	2 ^{†,‡,¶}	0.17 ± 0.02	0.15 ± 0.03
	187.0615	$C_8H_{12}O_5$	4.8	0.63	-0.25	-0.7	3.48	1	0.20 ± 0.03	0.36 ± 0.07
							3.91	1	0.35 ± 0.02	0.34 ± 0.06
~							2.86	1	0.40 ± 0.09	0.34 ± 0.06
C ₈	203.0554	$C_8H_{12}O_6$	-1.0	0.75	0.00	-2.7	3.86	2 [‡]	0.11 ± 0.01	0.07 ± 0.02
							3.59	2 [‡]	0.03 ± 0.002	0.04 ± 0.01
	173.0826	$C_8H_{14}O_4$	6.9	0.50	-0.75	1.2	3.67	1	0.40 ± 0.07	$\textbf{0.37} \pm 0.06$
	189.0770	$C_8H_{14}O_5$	3.7	0.63	-0.50	-0.7	3.49	2 ^{‡,§,¶}	0.06 ± 0.04	$\textbf{0.18} \pm \textbf{0.04}$
							5.31	1	0.23 ± 0.02	$\textbf{0.16} \pm 0.04$
	205.0722	$C_8H_{14}O_6$	4.9	0.75	-0.25	-2.7	3.83	2	0.22 ± 0.03	0.97 ± 0.12
	183.0668	$C_9H_{12}O_4$	6.0	0.44	-0.44	0.9	4.10	1	0.04 ± 0.02	0.12 ± 0.02
	215.0564	$C_9H_{12}O_6$	3.7	0.67	0.00	-3.0	3.86	2	0.10 ± 0.01	0.38 ± 0.07
							3.59	2	0.06 ± 0.01	0.10 ± 0.02
	169.0872	$C_9H_{14}O_3$	4.1	0.33	-0.89	2.8	4.71	1 [§]	1.10 ± 0.13	1.06 ± 0.21
	185.0825	C ₉ H ₁₄ O ₄	5.9	0.44	-0.67	0.9	4.45	2 ^{†,‡,§,¶,} *	$\textbf{3.86} \pm \textbf{0.59}$	$\textbf{3.30} \pm \textbf{0.56}$
							4.39	1 ^{†,¶}	_	1.45 ± 0.25
C9	201.0762	$C_9H_{14}O_5$	-0.5	0.56	-0.44	-1.0	3.65	1	0.52 ± 0.05	1.21 ± 0.20
		09.11409	0.0	0.00	0.11		4.20	1		0.29 ± 0.05
							4.31	1	0.15 ± 0.02	-
	187.0972	$C_9H_{16}O_4$	1.1	0.44	-0.89	0.9	5.16	2	0.04 ± 0.004	0.16 ± 0.02
	107.0072	0911604		0.11	0.00	0.0	4.00	2	-	0.08 ± 0.01
	219.0879	$C_9H_{16}O_6$	4.6	0.67	-0.44	-3.0	4.14	2	_	0.00 ± 0.01 0.04 ± 0.01
	197.0801	C ₁₀ H ₁₄ O ₄	-6.6	0.40	-0.60	0.6	3.93	1	0.52 ± 0.24	-
	107.0001	010111404	0.0	0.40	0.00	0.0	4.49	1 [§]	0.66 ± 0.29	_
	213.0767	$C_{10}H_{14}O_5$	1.9	0.50	-0.40	-1.3	3.89	1	0.00 ± 0.23 0.19 ± 0.12	
	210.0707	010111405	1.5	0.50	-0.40	-1.5	4.13	1	0.19 ± 0.12 0.49 ± 0.05	
	229.0720	$C_{10}H_{14}O_{6}$	3.5	0.60	-0.20	-3.2	4.35	2	0.14 ± 0.02	-
	183.1030	$C_{10}H_{14}O_6$ $C_{10}H_{16}O_3$	4.9	0.30	-0.20 -1.00	-3.2	4.33 5.09	ے 1 ^{‡,§,} *	0.14 ± 0.02 0.32 ± 0.05	-
						0.6		1 ^{‡,§}		 0.75 ± 0.13
C ₁₀	199.0979	$C_{10}H_{16}O_4$	4.5	0.40	-0.80	0.6	4.16 4.30	1 [‡]	3.66 ± 0.69	
	015 0017		0.0	0.50	0.00	1.0			0.91 ± 0.16	0.08 ± 0.03
	215.0917	$C_{10}H_{16}O_5$	-0.9	0.50	-0.60	-1.3	4.43	1	0.45 ± 0.03	-
	004 0070		4.0	0.00	0.40		5.03	1 2 ^{†,‡,§}	1.19 ± 0.17	-
	231.0872	$C_{10}H_{16}O_{6}$	1.3	0.60	-0.40	-3.2	4.61	2 ^{+,‡}	0.10 ± 0.01	-
							4.23	2 ^{***} 2 ^{†,‡}	0.13 ± 0.01	-
							5.29		0.13 ± 0.01	-
	201.1127	C ₁₀ H ₁₈ O ₄	0.0	0.40	-1.00	0.6	5.63	1	0.05 ± 0.01	0.20 ± 0.08
	315.1448	$C_{15}H_{24}O_7$	1.3	0.47	-0.67	-6.6	5.34	6	0.01 ± 0.002	0.02 ± 0.01
							5.95	6	_	0.01 ± 0.00
C ₁₅	331.1404	$C_{15}H_{24}O_8$	3.3	0.53	-0.53	-8.5	5.67	6	<0.01	$\textbf{0.03} \pm 0.00$
- 15							5.52	6	<0.01	0.01 ± 0.00
	347.1346	$C_{15}H_{24}O_9$	1.2	0.60	-0.40	-10.5	5.32	6	-	0.02 ± 0.00
		$C_{15}H_{26}O_8$	0.6	0.53	-0.67	-8.5	5.98	6	<0.01	0.03 ± 0.00
	333.1551									
	333.1551 311.1503	$C_{16}H_{24}O_{6}$	2.6	0.38	-0.75	-5.1	5.93	6	0.06 ± 0.01	0.09 ± 0.02
							5.93 5.42 5.33	6 4 ^{†,§} 4 ^{†,§}	$\begin{array}{c} 0.06 \pm 0.01 \\ 0.01 \pm 0.001 \\ < 0.01 \end{array}$	$\begin{array}{c} 0.09 \pm 0.02 \\ 0.02 \pm 0.00 \\ 0.02 \pm 0.00 \end{array}$

Table S3. Molecular products identified in SOA produced from ozonolysis of α -pinene and β -pinene.

							5.16	4 [†]	0.01 ± 0.002	0.02 ± 0.005
	313.1661	$C_{16}H_{26}O_{6}$	3.2	0.38	-0.88	-5.1	6.23	6 [§]	0.02 ± 0.002	0.06 ± 0.01
	329.1607	$C_{16}H_{26}O_7$	2.1	0.44	-0.75	-6.9	5.59	6	0.04 ± 0.004	0.14 ± 0.03
C ₁₆							5.27	6	0.01 ± 0.001	0.02 ± 0.005
							5.10	6	<0.01	0.01 ± 0.003
	345.1549	$C_{16}H_{26}O_8$	0.0	0.50	-0.63	-8.8	5.48	6	_	0.03 ± 0.01
							4.89	6	0.01 ± 0.001	0.02 ± 0.004
							5.68	6	0.01 ± 0.001	-
	361.1512	$C_{16}H_{26}O_{9}$	3.6	0.56	-0.50	-10.7	5.17	6	-	0.01 ± 0.003
							4.94	6	0.01 ± 0.001	0.02 ± 0.005
							5.60	6	0.01 ± 0.002	-
	377.1455	$C_{16}H_{26}O_{10}$	1.9	0.63	-0.38	-12.7	5.27	6	0.02 ± 0.003	0.15 ± 0.02
	363.1640	$C_{16}H_{28}O_{9}$	-4.1	0.56	-0.63	-10.7	5.01	6	-	0.01 ± 0.002
	323.1509	$C_{17}H_{24}O_6$	4.3	0.35	-0.71	-5.4	6.05	6	0.01 ± 0.001	-
							6.29	6	<0.01	-
	309.1699	$C_{17}H_{26}O_5$	-1.0	0.29	-0.94	-3.6	5.90	6 [§]	0.02 ± 0.002	-
	325.1672	$C_{17}H_{26}O_{6}$	6.5	0.35	-0.82	-5.4	5.87	4 [§]	_	0.02 ± 0.005
							5.76	4 [§]	0.01 ± 0.002	_
							6.14	4 [§]	0.01 ± 0.001	_
	341.1607	$C_{17}H_{26}O_7$	2.1	0.41	-0.71	-7.2	5.80	6	$\textbf{0.06} \pm 0.005$	0.11 ± 0.02
							6.46	6	_	0.02 ± 0.004
	357.1555	$C_{17}H_{26}O_8$	1.7	0.47	-0.59	-9.1	5.43	4 ^{†,‡,§}	0.22 ± 0.02	$\textbf{0.59} \pm \textbf{0.12}$
							5.24	4 [†]	_	0.06 ± 0.01
C ₁₇	373.1485	$C_{17}H_{26}O_9$	-3.8	0.53	-0.47	-11.0	4.90	6	_	$\textbf{0.03} \pm 0.004$
017		- 17 - 20 - 3	0.0		••••		5.36	6	0.01 ± 0.001	0.01 ± 0.002
	311.1859	$C_{17}H_{28}O_5$	0.3	0.29	-1.06	-3.6	7.13	6	_	0.01 ± 0.01
	327.1808	C ₁₇ H ₂₈ O ₆	0.0	0.35	-0.94	-5.4	6.05	6	0.01 ± 0.001	-
	343.1761	C ₁₇ H ₂₈ O ₇	1.2	0.41	-0.82	-7.2	5.76	6	-	$\textbf{0.03} \pm 0.005$
	040.1701	01/11/28/07	1.2	0.41	-0.02	-1.2	5.90	6		0.02 ± 0.003
							6.09	6	_	0.02 ± 0.004 0.01 ± 0.001
	250 1714		2.2	0.47	-0.71	-9.1	6.02	6	_	0.01 ± 0.001 0.05 ± 0.01
	359.1714	C ₁₇ H ₂₈ O ₈						6	_	
	375.1653	$C_{17}H_{28}O_9$	-0.5	0.53	-0.59	-11.0	4.78	6	—	0.03 ± 0.01
	201 1500		1 0	0 50	0.47	12.0	6.34 5.40	6	—	0.01 ± 0.003
	391.1599	C ₁₇ H ₂₈ O ₁₀	-1.3	0.59	-0.47	-13.0	5.40	6	-	0.03 ± 0.005
	337.1634 353.1604	$C_{18}H_{26}O_{6}$	-5.0	0.33 0.39	-0.78 -0.67	-5.7 -7.6	6.32 5.88	6	$\begin{array}{c} 0.07 \pm 0.01 \\ 0.02 \pm 0.002 \end{array}$	0.02 ± 0.005
	369.1554	C ₁₈ H ₂₆ O ₇	1.1 1.4	0.39	-0.67 -0.56	-7.0 -9.4	5.00 5.16	6	0.02 ± 0.002 0.01 ± 0.001	$-$ 0.02 \pm 0.004
	009.1004	$C_{18}H_{26}O_8$	1.4	0.44	-0.50	-5.4	5.36	6	-	0.02 ± 0.004 0.02 ± 0.002
	307.1893	C ₁₈ H ₂₈ O ₄	-5.2	0.22	-1.11	-2.2	6.65	6	0.01 ± 0.002	0.02 ± 0.002
	323.1860	C ₁₈ H ₂₈ O ₅	0.6	0.22	-1.00	-3.9	6.22	6	-	0.04 ± 0.01
	020.1000	018112805	0.0	0.20	1.00	0.0	6.99	6 [¶]	_	0.01 ± 0.004
							6.83	6	0.01 ± 0.001	_
	339.1822	C ₁₈ H ₂₈ O ₆	4.1	0.33	-0.89	-5.7	6.72	6	_	$\textbf{0.13} \pm \textbf{0.02}$
		- 101 - 20 - 0					6.45	6	_	0.06 ± 0.01
							5.86	6	$\textbf{0.03} \pm \textbf{0.002}$	_
	355.1754	C ₁₈ H ₂₈ O ₇	-0.8	0.39	-0.78	-7.6	5.38	6	_	$\textbf{0.08} \pm 0.02$
							6.37	6¶	_	0.01 ± 0.004
C ₁₈	371.1707	C ₁₈ H ₂₈ O ₈	0.3	0.44	-0.67	-9.4	5.58	6	_	$\textbf{0.06} \pm \textbf{0.01}$
.0	387.1651	C ₁₈ H ₂₈ O ₉	-1.0	0.50	-0.56	-11.3	5.55	6	0.06 ± 0.003	_
	403.1601	C ₁₈ H ₂₈ O ₁₀	-0.7	0.56	-0.44	-13.2	6.09	6	0.01 ± 0.001	_
	419.1525	C ₁₈ H ₂₈ O ₁₁	-6.7	0.61	-0.33	-15.2	4.80	6	_	0.01 ± 0.003
	341.1960	$C_{18}H_{30}O_{6}$	-1.2	0.33	-1.00	-5.7	7.01	6	_	$\textbf{0.02} \pm \textbf{0.004}$
	357.1919	$C_{18}H_{30}O_7$	1.7	0.39	-0.89	-7.6	7.04	6	_	$\textbf{0.07} \pm \textbf{0.02}$
							6.79	6	_	$\textbf{0.02} \pm \textbf{0.003}$

						-	MONOMER TAL DIMER TOTAL	$\begin{array}{c} 20.51 \pm 2.45 \\ 1.27 \pm 0.11 \end{array}$	3.26 ± 0.60
								20 31 + 245	
	- 1002 - 9							00 51 10 45	15.60 ± 2.65
							6	_	0.01 ± 0.003
417.1769	C19H30O10	1.9	0.53	-0.53	-13.5	6.88	6	_	0.04 ± 0.01
						5.48	6	0.01 ± 0.003	_
385.1873	$C_{19}H_{30}O_8$	2.9	0.42	-0.74	-9.7	6.14	6	0.01 ± 0.001	_
						5.96	6	0.02 ± 0.003	_
						6.72	6	_	0.07 ± 0.02
369.1916	$C_{19}H_{30}O_7$	0.8	0.37	-0.84	-7.9	6.62	6 [¶]	$\textbf{0.02} \pm 0.005$	0.12 ± 0.02
353.1961	$C_{19}H_{30}O_{6}$	-0.8	0.32	-0.95	-6.1	6.28	6	_	0.02 ± 0.005
						7.48	6	0.01 ± 0.001	_
						6.07	6	0.05 ± 0.005	_
						7.54	6	_	0.01 ± 0.001
337.2027	$C_{19}H_{30}O_5$	3.6	0.26	-1.05	-4.3	7.31	6 [¶]	_	0.11 ± 0.02
						5.99	6	0.06 ± 0.01	_
399.1663	$C_{19}H_{28}O_{9}$	2.0	0.47	-0.53	-11.6	5.86	6	0.07 ± 0.005	_
						6.00	4^{\ddagger}	0.04 ± 0.004	_
367.1766	$C_{19}H_{28}O_7$	2.5	0.37	-0.74	-7.9	6.10	4 ^{‡,§}	0.12 ± 0.01	_
351.1828	$C_{19}H_{28}O_6$	5.7	0.32	-0.84	-6.1	5.87	6	_	0.02 ± 0.004
335.1862	$C_{19}H_{28}O_5$	1.2	0.26	-0.95	-4.3	7.12	6	0.02 ± 0.002	_
405.1764	$C_{18}H_{30}O_{10}$	0.7	0.56	-0.56	-13.2	4.61	4 [¶]	_	$\textbf{0.03} \pm 0.005$
						6.13	6	0.02 ± 0.002	_
389.1814		0.5	0.50	-0.67	-11.3		6	_	0.40 ± 0.08
								_	0.00 ± 0.01 0.01 ± 0.002
575.1651	C181 130 C8	-2.9	0.44	-0.70	-3.4			_	$\begin{array}{c} 0.03 \pm 0.005 \\ 0.03 \pm 0.01 \end{array}$
	335.1862 351.1828 367.1766 399.1663 337.2027 353.1961 369.1916	389.1814 C18H30O9 405.1764 C18H30O10 335.1862 C19H28O5 351.1828 C19H28O7 367.1766 C19H28O7 399.1663 C19H28O9 337.2027 C19H30O5 353.1961 C19H30O6 369.1916 C19H30O7 385.1873 C19H30O8 417.1769 C19H30O10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	389.1814 $C_{18}H_{30}O_9$ 0.5 0.50 405.1764 $C_{18}H_{30}O_{10}$ 0.7 0.56 335.1862 $C_{19}H_{28}O_5$ 1.2 0.26 351.1828 $C_{19}H_{28}O_6$ 5.7 0.32 367.1766 $C_{19}H_{28}O_7$ 2.5 0.37 399.1663 $C_{19}H_{28}O_9$ 2.0 0.47 337.2027 $C_{19}H_{30}O_5$ 3.6 0.26 353.1961 $C_{19}H_{30}O_7$ 0.8 0.32 369.1916 $C_{19}H_{30}O_7$ 0.8 0.37 385.1873 $C_{19}H_{30}O_8$ 2.9 0.42 417.1769 $C_{19}H_{30}O_{10}$ 1.9 0.53	389.1814 $C_{18}H_{30}O_9$ 0.5 0.50 -0.67 405.1764 $C_{18}H_{30}O_{10}$ 0.7 0.56 -0.56 335.1862 $C_{19}H_{28}O_5$ 1.2 0.26 -0.95 351.1828 $C_{19}H_{28}O_6$ 5.7 0.32 -0.84 367.1766 $C_{19}H_{28}O_7$ 2.5 0.37 -0.74 399.1663 $C_{19}H_{28}O_9$ 2.0 0.47 -0.53 337.2027 $C_{19}H_{30}O_5$ 3.6 0.26 -1.05 353.1961 $C_{19}H_{30}O_7$ -0.8 0.32 -0.95 369.1916 $C_{19}H_{30}O_7$ 0.8 0.37 -0.84 385.1873 $C_{19}H_{30}O_8$ 2.9 0.42 -0.74 417.1769 $C_{19}H_{30}O_{10}$ 1.9 0.53 -0.53	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^aAverage carbon oxidation state ($\overline{OS}_{C} = 2 O:C - H:C$). ^bSaturation mass concentration (C^{*}). Estimated using the empirical model of Donahue et al.⁴

^cAssigned based on comparison with *authentic standards and/or LC/(–)ESI-MS data from [†]Yasmeen et al. (2010),⁵ [‡]Yasmeen et al. (2012),⁶ [§]Zhang et al. (2015),¹ and [¶]Kenseth et al. (2018).⁷ Structures containing (hydro)peroxide functionalities were not considered.^{7,8} Absent structural information, carboxylic acid **1** and dimer ester **6** were used, unless O:C > 0.65 or \overline{OS}_{C} > –0.25. ^dCalculated for suspended SOA after ~5 h of ozonolysis (see Figure 1) and reported as averages of replicate experiments for α pinene (n = 4) and β -pinene (n = 5) together with standard deviations (1σ).

^eMethod uncertainty is estimated to be $\pm 23\%$ (relative). See Experimental for details.

_				A produced from ozonolysis of α -pine	SOA Mass Fraction ^{c,d} (%)			
Observed <i>m/z</i> (–)	Molecular Formula	t _R (min)	Compound Assignment ^b	Proposed Molecular Structure ^b	α -Pinene	β -Pinene		
185.0825	$C_9H_{14}O_4$	4.45	<i>cis</i> -Pinic acid ^{†,‡,§,¶,} ∗	но	$\textbf{3.86} \pm \textbf{0.59}$	$\textbf{3.30} \pm \textbf{0.56}$		
171.0669	$C_8H_{12}O_4$	4.07	Terpenylic acid ^{†,‡,§}	орудария и проставляется и простав И проставляется и	$\textbf{3.36} \pm \textbf{0.59}$	$\textbf{3.27} \pm \textbf{0.63}$		
199.0979	$C_{10}H_{16}O_4$	4.16	10-hydroxypinonic acid ^{‡.§}	но	$\textbf{3.66} \pm \textbf{0.69}$	0.75 ± 0.13		
185.0825	$C_9H_{14}O_4$	4.39	Homoterpenylic $\operatorname{acid}^{\dagger}$	он Сон	_	1.45 ± 0.25		
215.0917	$C_{10}H_{16}O_5$	5.03	_	_	$\textbf{1.19} \pm 0.17$	-		
169.0872	$C_9H_{14}O_3$	4.71	<i>cis-</i> Pinalic acid [§]	но	1.10 ± 0.13	1.06 ± 0.21		
199.0979	$C_{10}H_{16}O_4$	4.30	8-hydroxypinonic acid [‡]	носторон	0.91 ± 0.16	N/A		
197.0801	$C_{10}H_{14}O_4$	4.49	Oxopinonic acid§	о	0.66 ± 0.29	_		
201.0762	$C_9H_{14}O_5$	3.65	-	_	N/A	1.21 ± 0.20		
205.0722	$C_8H_{14}O_6$	3.83	-		N/A	0.97 ± 0.12		
357.1555	$C_{17}H_{26}O_8$	5.43	Pinyl-diaterpenyl ester ^{†,‡,§}	но у у он	0.22 ± 0.02	0.59 ± 0.12		
367.1766	$C_{19}H_{28}O_7$	6.10	Pinonyl-pinyl ester ^{‡,§}	но состать сост	$\textbf{0.12} \pm \textbf{0.01}$	_		
337.1634	$C_{18}H_{26}O_{6}$	6.32	-	- · · ·	0.07 ± 0.01	N/A		
399.1663	$C_{19}H_{28}O_{9}$	5.86	_	_	0.07 ± 0.005	_		
387.1651	$C_{18}H_{28}O_9$	5.55	_	_	0.06 ± 0.003	_		
399.1663	$C_{19}H_{28}O_{9}$	5.99	_	_	0.06 ± 0.01	_		
337.2027	$C_{19}H_{30}O_5$	6.07	_	-	0.05 ± 0.005	_		
389.1814	$C_{18}H_{30}O_{9}$	6.29	-	-	-	0.40 ± 0.08		
377.1455	$C_{16}H_{26}O_{10}$	5.27	-	-	N/A	0.15 ± 0.02		
329.1607	$C_{16}H_{26}O_7$	5.59	-	-	N/A	0.14 ± 0.03		
339.1822	$C_{18}H_{28}O_{6}$	6.72	-		_	0.13 ± 0.02		
369.1916	$C_{19}H_{30}O_7$	6.62	_1	но	N/A	0.12 ± 0.02		
337.2027	$C_{19}H_{30}O_5$	7.31	_1	HO	_	0.11 ± 0.02		
311.1503	$C_{16}H_{24}O_{6}$	5.93	-	_	0.06 ± 0.01	0.09 ± 0.02		
				TOTAL MONOMER	14.73 ± 2.02	12.01 ± 2.05		
				TOTAL DIMER	0.72 ± 0.07	1.74 ± 0.31		
				TOTAL	15.45 ± 2.08	13.75 ± 2.33		

Table S4. Major monomers and dimers identified in SOA produced from ozonolysis of α -pinene and β -pinene.^a

^aMonomer mass fraction >0.65%. Dimer mass fraction >0.05% for α -pinene and >0.09% for β -pinene. N/A denotes below threshold. ^bBased on comparison with *authentic standards and/or LC/(–)ESI-MS data from [†]Yasmeen et al. (2010),⁵ [‡]Yasmeen et al. (2012),⁶ [§]Zhang et al. (2015),¹ and [¶]Kenseth et al. (2018).⁷

^cCalculated for suspended SOA after ~5 h of ozonolysis (see Figure 1) and reported as averages of replicate experiments for α -pinene (n = 4) and β -pinene (n = 5) together with standard deviations (1 σ).

^dMethod uncertainty is estimated to be $\pm 23\%$ (relative). See Experimental for details.

S3. Figures S1-S3

Figure S1. Time series of GC/FID-derived α -pinene mixing ratios, O₃ mixing ratios, and SMPS-derived suspended aerosol volume concentrations for a representative α -pinene ozonolysis experiment in the CTEC (Table S1, Exp. 3). Shading denotes sequential periods of α -pinene injection (30 min), (NH₄)₂SO₄ (AS) seed injection (1 h), AS seed wall loss (3.25 h), O₃ injection (42 min), and PILS sample collection (5 min).

Figure S2. Influence of eluent composition on the (–)ESI efficiencies of carboxylic acids **1–3** and dimer esters **4–6**, evaluated for an equimolar (1.00 μ M) aqueous solution via isocratic UPLC/(–)ESI-Q-TOF-MS; all other acquisition parameters [e.g., total flow rate, injection volume, and (–)ESI conditions] were unchanged. Profiles for each compound are plotted as the average (1 σ) EIC peak area of triplicate measurements, normalized to the EIC peak area from the gradient method, as a function of isocratic acetonitrile volume fraction. Vertical dashed line separates ranges of acetonitrile content within which monomers (10–38%) and dimers (34–63%) in α -pinene and β -pinene SOA elute during gradient UPLC, while diamonds denote acetonitrile volume fractions at which carboxylic acids **1–3** and dimer esters **4–6** elute during gradient UPLC. Retention times in the gradient method (t_R 2.81–7.30 min) corresponding to the given acetonitrile volume fractions (10–60%) are also shown.

Figure S3. Representative UPLC/(–)ESI-Q-TOF-MS BPI chromatograms of SOA produced from ozonolysis of (A) α -pinene and (B) β -pinene after ~5 h of reaction in the CTEC (see Figure 1). Numbers correspond to nominal *m/z* values of [M–H]⁻ ions. Molecular formulas (C_xH_yO_z) were assigned with mass tolerances of <7 ppm and supported by associated ¹³C isotope distributions. Chromatograms consist of monomeric (black) and dimeric (green) regions.

S4. Synthetic Procedures and Characterization Data

General Information

Unless otherwise stated, reactions were performed in flame-dried glassware under ambient conditions using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon. Reagents were purchased from commercial sources and used as received. Reaction temperatures were controlled by an IKAmag temperature modulator. Thinlayer chromatography (TLC) was performed using E. Merck silica gel 60 F254 pre-coated plates (250 μ m) and visualized by UV fluorescence quenching, potassium permanganate staining, or panisaldehyde staining. Silicycle SiliaFlash P60 Academic Silica gel (particle size 40-63 µm) was used for flash chromatography. Preparative HPLC was performed using an Agilent 1200 HPLC system equipped with an ACE C_{18} column (5 µm, 21.2 mm × 250 mm). ¹H and ¹³C NMR spectra were recorded on a Varian Inova 500 (500 and 125 MHz, respectively) spectrometer and are reported in terms of chemical shift relative to $CHCl_3$ (δ 7.26 and 77.16 ppm, respectively). Data for ¹H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant, integration). Abbreviations are used as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. IR spectra were obtained from thin films deposited on NaCl plates using a Perkin Elmer Spectrum BXII spectrometer and are reported in frequency of absorption (cm⁻¹). Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm) using a 100 mm path-length cell. High resolution mass spectra (HRMS) were acquired using a Waters ACQUITY UPLC I-Class system coupled to a Xevo G2-S ESI-Q-TOF-MS (see Experimental).

2-((1*S***,3***S***)-3-acetyl-2,2-dimethylcyclobutyl)acetic acid ((+)-***cis***-pinonic acid, 1) (+)-***cis***-Pinonic acid (1) was prepared according to a modified literature procedure¹ from commercial (+)-\alpha-pinene (98%, 89% ee, Sigma-Aldrich). To a stirred solution of (+)-\alpha-pinene (5.00 mL, 31.5 mmol, 1.0 equiv) in CH₂Cl₂/MeCN/H₂O (2:2:3, 260 mL) at 23 °C was added NaIO₄ (26.8 g, 125.3 mmol, 4.0 equiv) followed by catalytic RuCl₃ hydrate (240 mg). After 24 h, TLC**

indicated complete conversion of the starting material and the mixture was diluted with Et₂O (200 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3×150 mL). The combined organic phases were filtered through celite and concentrated. The crude residue was dissolved in Et₂O (100 mL) and extracted with 10% aqueous Na₂CO₃ (3×150 mL). The aqueous phases were combined, acidified to pH 1 with concentrated H₂SO₄, and extracted with Et₂O (3×150 mL). The concentrated. The crude product was purified by flash chromatography (40% EtOAc/hexanes) to afford the title compound as a white solid (5.13 g, 27.8 mmol, 88% yield). [α]_D²⁵ = +81.4° (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 2.89 (dd, *J* = 10.2, 7.6 Hz, 1H), 2.42 – 2.26 (m, 3H), 2.05 (s, 3H), 2.03 – 1.91 (m, 2H), 1.33 (s, 3H), 0.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 207.8, 179.1, 54.3, 43.4, 37.8, 35.0, 30.3, 30.3, 23.1, 17.5; IR (thin film, NaCl) 2959, 1731, 1708, 1184, 956 cm⁻¹; HRMS (ESI-TOF) *m/z* calc'd for [M–H]⁻ C₁₀H₁₅O₃ = 183.1021, found 183.1024. All physical and spectral data were in good accordance with previously reported values.⁹⁻¹¹

(1*S*,3*S*)-3-(carboxymethyl)-2,2-dimethylcyclobutane-1-carboxylic acid ((+)-*cis*-pinic acid, 2) (+)-*cis*-Pinic acid (2) was prepared according to a modified literature procedure.¹ To a stirred solution of (+)-*cis*-pinonic acid (1) (2.50 g, 13.6 mmol, 1.0 equiv) in H₂O/dioxane (1:5, 200 mL) at 0 °C was added dropwise an aqueous solution of NaOBr, prepared via addition of Br₂ (2.30 mL, 44.9 mmol, 3.3 equiv) to a solution of NaOH (7.05 g, 176.3 mmol, 13.0 equiv) in H₂O (68 mL) at 0 °C. The mixture was stirred for 16 h and gradually allowed to warm to 23 °C, at which point TLC indicated complete consumption of 1. The mixture was washed with CH₂Cl₂ (3 × 100 mL) and 40% aqueous NaHSO₃ (63 mL) was added. The aqueous phase was acidified to pH 1 with concentrated HCl and extracted with Et₂O (3 × 150 mL). The combined organic phases were washed with brine, dried over MgSO₄, and concentrated. The crude product was purified by flash chromatography (40% EtOAc/hexanes) followed by preparative HPLC [H₂O/MeCN; 40.0 mL min⁻¹; $\lambda = 220$ nm; (0–8.0 min) 82% H₂O, (8.0–10.0 min) 100% MeCN; 450 µL injection; $t_R =$

3.02 min] to afford the title compound as a white solid (1.61 g, 8.65 mmol, 64% yield). $[\alpha]_D^{25} =$ +4.6° (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 2.78 (dd, *J* = 10.3, 7.8 Hz, 1H), 2.44 – 2.30 (m, 3H), 2.16 – 2.09 (m, 1H), 1.97 – 1.89 (m, 1H), 1.24 (s, 3H), 1.01 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.4, 179.1, 46.2, 43.1, 38.1, 35.3, 30.0, 24.4, 17.7; IR (thin film, NaCl) 2959, 1703, 1422, 1248, 937 cm⁻¹; HRMS (ESI-TOF) *m/z* calc'd for [M–H]⁻ C₉H₁₃O₄ = 185.0814, found 185.0815. All physical and spectral data were in good accordance with previously reported values.^{9,11}

2-((1S,3S)-3-(1-hydroxyethyl)-2,2-dimethylcyclobutyl)acetic acid ((+)-cis-pinolic acid, 3) To a stirred solution of (+)-cis-pinonic acid (1) (2.00 g, 10.9 mmol, 1.0 equiv) in CH₂Cl₂/MeOH (4:1, 109 mL) at 0 °C was added NaBH₄ (2.46 g, 65.0 mmol, 6.0 equiv) in one portion. The resulting suspension was stirred for 10 h and gradually allowed to warm to 23 °C, at which point TLC indicated complete consumption of 1. The reaction mixture was cooled to 0 °C, quenched by slow addition of saturated aqueous NH₄Cl, and diluted with Et₂O (100 mL) and H₂O (100 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3×100 mL). The combined organic phases were washed with brine, dried over MgSO₄, and concentrated to provide the crude product in quantitative yield as a mixture of epimers (¹H NMR shows epimers form in 2:1 ratio). The crude product was purified by flash chromatography (40% EtOAc/hexanes) to afford the major epimer as a white solid (1.32 g, 7.09 mmol, 65% yield). $\left[\alpha\right]_{D}^{25} = -28.7^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 3.73 (dq, *J* = 10.0, 6.2 Hz, 1H), 2.41 – 2.32 (m, 1H), 2.27 -2.16 (m, 2H), 2.07 - 1.98 (m, 1H), 1.78 (dt, J = 8.0, 10.2 Hz, 1H), 1.24 - 1.17 (m, 1H), 1.15 (s, 3H), 1.06 (d, J = 6.2 Hz, 3H), 1.03 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.0, 69.4, 50.4, 40.0, 37.8, 35.0, 31.0, 26.6, 21.3, 16.9; IR (thin film, NaCl) 3304, 2962, 1684, 1255, 1169, 668 cm⁻¹; HRMS (ESI-TOF) m/z calc'd for $[M-H]^- C_{10}H_{17}O_3 = 185.1178$, found 185.1179. All physical and spectral data were in good accordance with previously reported values.¹²

benzyl 2-((1S,3S)-3-acetyl-2,2-dimethylcyclobutyl)acetate (1a)

To a stirred solution of (+)-*cis*-pinonic acid (1) (3.00 g, 16.3 mmol, 1.0 equiv), benzyl alcohol (5.08 mL, 48.9 mmol, 3.0 equiv), and DMAP (199 mg, 1.63 mmol, 0.10 equiv) in CH₂Cl₂ (33 mL) at 0 °C was added DIC (2.55 mL, 16.3 mmol, 1.0 equiv) dropwise. The mixture was stirred for 24 h and gradually allowed to warm to 23 °C, at which point TLC indicated complete consumption of **1**. The solution was diluted with Et₂O (100 mL) and H₂O (100 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 50 mL). The combined organic phases were washed with brine, dried over MgSO₄, and concentrated. The crude product was purified by flash chromatography (30% Et₂O/hexanes) to afford the title compound as a colorless oil (3.89 g, 14.2 mmol, 87% yield). [α]_D²⁵ +44.8° (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 5.08 (s, 2H), 2.85 (dd, *J* = 10.2, 7.5 Hz, 1H), 2.42 – 2.26 (m, 3H), 2.02 (s, 3H), 2.00 – 1.94 (m, 1H), 1.93 – 1.86 (m, 1H), 1.28 (s, 3H), 0.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 207.5, 172.6, 135.9, 128.6, 128.3, 128.3, 66.2, 54.2 43.3, 38.0, 35.2, 30.2, 30.2, 23.0, 17.3; IR (thin film, NaCl) 2954, 1733, 1704, 1164, 977, 751, 699 cm⁻¹; HRMS (ESI-TOF) *m/z* calc'd for [M+Na]⁺ C₁₇H₂₂O₃Na = 297.1467, found 297.1476.

benzyl 2-((1*S*,3*S*)-3-(1-hydroxyethyl)-2,2-dimethylcyclobutyl)acetate (3a)

To a stirred solution of benzyl ester **1a** (2.00 g, 7.29 mmol, 1.0 equiv) in $CH_2Cl_2/MeOH$ (4:1, 73 mL) at 0 °C was added NaBH₄ (827 mg, 21.9 mmol, 3.0 equiv) in one portion. The resulting suspension was stirred at 0 °C for 10 min, at which time TLC indicated complete consumption of **1a**. The mixture was quenched by slow addition of saturated aqueous NH₄Cl, then diluted with Et₂O (100 mL) and H₂O (100 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 100 mL). The combined organic phases were washed with brine, dried over MgSO₄, and concentrated to provide the crude product as a mixture of epimers. The crude product was

purified by flash chromatography (40% Et₂O/hexanes) to afford the major epimer as a colorless oil (1.28 g, 4.63 mmol, 64% yield). $[\alpha]_D^{25}$ –23.8° (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 5.09 (s, 2H), 3.69 (dq, *J* = 10.0, 6.2 Hz, 1H), 2.41 – 2.33 (m, 1H), 2.28 – 2.17 (m, 2H), 2.00 – 1.93 (m, 1H), 1.75 (dt, *J* = 8.0, 10.2 Hz, 1H), 1.16 (m, 1H), 1.11 (s, 3H), 1.04 (d, *J* = 6.2 Hz, 3H), 1.00 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 136.0, 128.6, 128.3, 128.2, 69.2, 66.2, 50.3, 39.9, 37.9, 35.3, 30.9, 26.6, 21.3, 16.8; IR (thin film, NaCl) 3425, 2960, 1734, 1456, 1164, 750, 698 cm⁻¹; HRMS (ESI-TOF) *m/z* calc'd for [M+Na]⁺ C₁₇H₂₄O₃Na = 299.1623, found 299.1616.

Note: Deviation from the procedure described above by allowing the reaction to warm to room temperature and stir for prolonged periods of time (i.e., 10 h) was found to result in formation of significant quantities of the methyl ester of 3a, which is extremely difficult to separate from 3a.

(1*S*,3*S*)-3-(2-(1-((1*S*,3*S*)-3-(2-(benzyloxy)-2-oxoethyl)-2,2-dimethylcyclobutyl)ethoxy)-2-oxoethyl)-2,2-dimethylcyclobutane-1-carboxylic acid (4a)

To a stirred solution of alcohol **3a** (100 mg, 0.362 mmol, 1.00 equiv), (+)-*cis*-pinic acid (**2**) (101 mg, 0.543 mmol, 1.5 equiv), and DMAP (4.4 mg, 0.0362 mmol, 0.10 equiv) in CH₂Cl₂ (3.6 mL) at 0 °C was added DIC (85 μ L, 0.543 mmol, 1.5 equiv) dropwise. The mixture was stirred for 24 h and gradually allowed to warm to 23 °C, at which point TLC indicated complete consumption of **3a**. The solution was diluted with Et₂O (20 mL) and H₂O (20 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 20 mL). The combined organic phases were washed with brine, dried over MgSO₄, and concentrated. The crude product was purified by flash chromatography (30–40% Et₂O/hexanes) to afford the title compound as a colorless oil (83 mg, 0.187 mmol, 52% yield). [α]_D²⁵ = –11.3° (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 5.08 (s, 2H), 4.76 (dq, *J* = 10.2, 6.1 Hz, 1H), 2.78 (dd, *J* = 10.3, 7.8 Hz, 1H), 2.41 – 2.29 (m, 3H), 2.28 – 2.18 (m, 3H), 2.14–2.08 (m, 1H), 2.06 – 1.95 (m, 2H), 1.89 (dt, *J* = 11.2, 10.3 Hz, 1H), 1.25 (s, 3H), 1.22 (m, 1H), 1.06 (s, 3H), 1.04 (d, *J* = 6.2 Hz, 3H), 1.00 (s, 3H), 0.86 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 178.8, 172.9, 172.2, 136.0, 128.6, 128.4, 128.3, 71.8, 66.3,

47.0, 46.1, 43.0, 39.9, 38.4, 38.1, 35.9, 35.2, 30.5, 30.1, 26.5, 24.5, 17.7, 17.7, 16.9; IR (thin film, NaCl) 2958, 1731, 1456, 1170, 1067, 750, 697 cm⁻¹; HRMS (ESI-TOF) *m/z* calc'd for $[M-H]^-$ C₂₆H₃₅O₆ = 443.2434, found 443.2442.

benzyl 2-((1*S*,3*S*)-3-(1-(2-((1*S*,3*S*)-3-acetyl-2,2-dimethylcyclobutyl)acetoxy)ethyl)-2,2dimethylcyclobutyl)acetate (5a)

To a stirred solution of alcohol **3a** (1.00 g, 3.62 mmol, 1.0 equiv), (+)-*cis*-pinonic acid (1) (1.33 g, 7.24 mmol, 2.0 equiv), and DMAP (44 mg, 0.362 mmol, 0.10 equiv) in CH₂Cl₂ (36 mL) at 0 °C was added DIC (1.14 mL, 7.24 mmol, 2.0 equiv) dropwise. The mixture was stirred for 24 h and gradually allowed to warm to 23 °C, at which point TLC indicated complete consumption of 3a. The solution was diluted with Et₂O (100 mL) and H₂O (100 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3×100 mL). The combined organic phases were washed with brine, dried over MgSO₄, and concentrated. The crude product was purified by flash chromatography (30% Et₂O/hexanes) to afford the title compound as a colorless oil (1.46 g, 3.31 mmol, 91% yield). $[\alpha]_{D}^{25}$ +22.4° (c 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 5.06 (s, 2H), 4.74 (dq, J = 10.2, 6.1 Hz, 1H), 2.85 (dd, J = 10.0, 7.7 Hz, 1H), 2.38 – 2.29 (m, 2H), 2.28 - 2.19 (m, 3H), 2.16 (dd, J = 15.4, 7.7 Hz, 1H), 2.02 (s, 3H), 2.00 - 1.87 (m, 4H), 1.30(s, 3H), 1.22 (m, 1H), 1.04 (s, 3H), 1.02 (d, J = 6.2 Hz, 3H), 0.84 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) & 207.5, 172.8, 172.2, 136.0, 128.6, 128.3, 128.3, 71.7, 66.2, 54.2, 47.0, 43.3, 39.8, 38.1, 38.0, 35.6, 35.2, 30.4, 30.3, 30.2, 26.4, 23.1, 17.6, 17.4, 16.8; IR (thin film, NaCl) 2956, 1731, 1706, 1455, 1369, 1167, 698 cm⁻¹; HRMS (ESI-TOF) m/z calc'd for $[M+Na]^+ C_{27}H_{38}O_5Na =$ 465.2617, found 465.2611.

benzyl 2-((1*S*,3*S*)-3-(1-(2-((1*S*,3*S*)-3-(1-hydroxyethyl)-2,2-dimethylcyclobutyl) acetoxy)ethyl)-2,2-dimethylcyclobutyl)acetate (6a)

To a stirred solution of benzyl ester 5a (400 mg, 0.904 mmol, 1.0 equiv) in CH₂Cl₂/MeOH (4:1, 9.0 mL) at 0 °C was added NaBH₄ (103 mg, 2.72 mmol, 3.0 equiv) in one portion. The resulting suspension was stirred at 0 °C for 10 min, at which time TLC indicated complete consumption of 5a. The mixture was quenched by slow addition of saturated aqueous NH₄Cl, then diluted with Et₂O (100 mL) and H₂O (100 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3×100 mL). The combined organic phases were washed with brine, dried over MgSO₄, and concentrated to provide the crude product as a mixture of epimers. The crude product was purified by flash chromatography (40% Et₂O/hexanes) to afford the major epimer as a colorless oil (245 mg, 0.551 mmol, 61% yield). [α]_D²⁵ -22.1° (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 5.07 (s, 2H), 4.74 (dq, J = 10.2, 6.1 Hz, 1H), 3.68 (dq, J = 10.0, 6.2 Hz, 1H), 2.41 – 2.05 (m, 6H), 2.04 – 1.91 (m, 3H), 1.73 (dt, J = 8.0, 10.2 Hz, 1H), 1.21 (m, 1H), 1.13 (s, 3H), 1.12 (m, J = 10.4 Hz, 1H), 1.05 (s, 3H), 1.03 (d, J = 6.1 Hz, 3H), 1.02 (d, J = 6.2 Hz, 3H), 1.00 (s, 3H), 0.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 172.6, 136.0, 128.6, 128.3, 128.3, 71.5, 69.2, 66.2, 50.3, 47.0, 39.9, 39.9, 38.1, 38.1, 35.8, 35.2, 31.1, 30.4, 26.7, 26.5, 21.3, 17.7, 16.9, 16.8; IR (thin film, NaCl) 3504, 2958, 1732, 1456, 1367, 1187, 1166, 750, 698 cm⁻¹; HRMS (ESI-TOF) m/z calc'd for $[M+Na]^+$ C₂₇H₄₀O₅Na = 467.2773, found 467.2773.

(1*S*,3*S*)-3-(2-(1-((1*S*,3*S*)-3-(carboxymethyl)-2,2-dimethylcyclobutyl)ethoxy)-2-oxoethyl)-2,2dimethylcyclobutane-1-carboxylic acid (4)

In a 2-necked round bottom flask equipped with a 3-way valve at 23 °C, benzyl ester **4a** (100 mg, 0.225 mmol, 1.0 equiv) was dissolved in THF (2.3 mL) and to this solution was added Pd/C (10% w/w, 25 mg). The flask was evacuated and backfilled with N₂ (3×), then purged and backfilled with H₂ (3×). The suspension was stirred for 2 h under H₂ (1 atm, balloon), at which point TLC indicated complete consumption of **4a**. The flask was evacuated and backfilled with N₂ (3×), then the suspension was diluted with EtOAc (20 mL), filtered through celite, and concentrated. The crude product was purified by flash chromatography (50% EtOAc/hexanes) to afford the title compound as a white solid (67 mg, 0.189 mmol, 84% yield). $[\alpha]_D^{25} = -11.4^\circ$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 4.76 (dq, *J* = 10.2, 6.1 Hz, 1H), 2.77 (dd, *J* = 10.3, 7.8 Hz, 1H), 2.41 – 2.29 (m, 3H), 2.28 – 2.18 (m, 3H), 2.15 – 1.94 (m, 3H), 1.88 (dt, *J* = 11.0, 10.3 Hz, 1H), 1.24 (s, 3H), 1.22 (m, 1H), 1.09 (s, 3H), 1.04 (d, *J* = 6.1 Hz, 3H), 0.99 (s, 3H), 0.87 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.8, 179.2, 172.3, 71.8, 47.1, 46.2, 43.1, 39.9, 38.5, 37.8, 35.9, 35.0, 30.5, 30.1, 26.5, 24.5, 17.7, 17.7, 16.9 ; IR (thin film, NaCl) 2957, 1704, 1247, 1211, 958, 739 cm⁻¹; HRMS (ESI-TOF) *m/z* calc'd for [M–H]⁻ C₁₉H₂₉O₆ = 353.1964, found 353.1967.

In a 2-necked round bottom flask equipped with a 3-way valve at 23 °C, benzyl ester **5a** (400 mg, 0.904 mmol, 1.0 equiv) was dissolved in THF (9.1 mL) and to this solution was added Pd/C (10%, 100 mg). The flask was evacuated and backfilled with N₂ (3×), then purged and backfilled with H₂ (3×). The suspension was stirred for 2 h under H₂ (1 atm, balloon), at which point TLC indicated complete consumption of **5a**. The flask was evacuated and backfilled with N₂ (3×), then the suspension was diluted with EtOAc (50 mL), filtered through celite, and concentrated. The crude product was purified by flash chromatography (40% EtOAc/hexanes) to afford the title compound as a white solid (206 mg, 0.585 mmol, 65% yield). $[\alpha]_D^{25}$ +29.4°(*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 4.74 (dq, *J* = 10.2, 6.1 Hz, 1H), 2.85 (dd, *J* = 10.0, 7.8 Hz, 1H), 2.37 – 2.09 (m,

6H), 2.08 - 1.83 (m, 7H), 1.29 (s, 3H), 1.22 (m, 1H), 1.06 (s, 3H), 1.01 (d, J = 6.1 Hz, 3H), 0.84 (s, 3H), 0.82 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 207.9, 179.1, 172.3, 71.7, 54.3, 47.0, 43.4, 39.9, 38.1, 37.8, 35.6, 34.9, 30.5, 30.3, 30.2, 26.4, 23.2, 17.6, 17.4, 16.8; IR (thin film, NaCl) 2956, 1728, 1706, 1369, 1180, 959, 867 cm⁻¹; HRMS (ESI-TOF) *m/z* calc'd for [M–H]⁻ C₂₀H₃₁O₅ = 351.2171, found 351.2178.

2-((1*S*,3*S*)-3-(1-(2-((1*S*,3*S*)-3-(1-hydroxyethyl)-2,2-dimethylcyclobutyl)acetoxy) ethyl)-2,2-dimethylcyclobutyl)acetic acid (6)

In a 2-necked round bottom flask equipped with a 3-way valve, benzyl ester **6a** (100 mg, 0.225 mmol, 1.0 equiv) was dissolved in THF (2.3 mL) and to this solution was added Pd/C (10% w/w, 25 mg). The flask was evacuated and backfilled with N₂ (3×), then purged and backfilled with H₂ (3×). The suspension was stirred for 2 h under H₂ (1 atm, balloon), at which point TLC indicated complete consumption of **6a**. The flask was evacuated and backfilled with N₂ (3×), then the suspension was diluted with EtOAc (20 mL), filtered through celite, and concentrated. The crude product was purified by flash chromatography (50% EtOAc/hexanes) to afford the title compound as a white solid (55 mg, 0.156 mmol, 69% yield). $[\alpha]_D^{25}$ –17.8° (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 4.74 (dq, *J* = 10.1, 6.1 Hz, 1H), 3.69 (dq, *J* = 10.0, 6.2 Hz, 1H), 2.39 – 1.92 (m, 9H), 1.74 (dt, *J* = 8.0, 10.2 Hz, 1H), 1.21 (m, 1H), 1.14 (m, *J* = 10.4 Hz, 1H), 1.12 (s, 3H), 1.08 (s, 3H), 1.03 (d, *J* = 6.1 Hz, 3H), 1.02 (d, *J* = 6.2 Hz, 3H), 0.99 (s, 3H), 0.86 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 178.6, 172.7, 71.6, 69.4, 50.2, 47.1, 39.9, 39.9, 38.1, 37.9, 35.8, 35.0, 31.0, 30.5, 26.7, 26.5, 21.2, 17.7, 16.9, 16.8; IR (thin film, NaCl) 3441, 2959, 1709, 1451, 1368, 1191, 874, 736, 668 cm⁻¹; HRMS (ESI-TOF) *m/z* calc'd for [M–H]⁻ C₂₀H₃₃O₅ = 353.2328, found 353.2332.

 ∞

S24

S28

¹H NMR (500 MHz, CDCl₃) of compound 4a.

 ^{13}C NMR (125 MHz, CDCl_3) of compound 4a.

¹H NMR (500 MHz, CDCl₃) of compound **5a**.

¹H NMR (500 MHz, CDCl₃) of compound **6a**.

 ^{13}C NMR (125 MHz, CDCl₃) of compound **6a**.

¹H NMR (500 MHz, CDCl₃) of compound 5.

S6. References

- Zhang, X.; McVay, R. C.; Huang, D. D.; Dalleska, N. F.; Aumont, B.; Flagan, R. C.; Seinfeld, J. H. Formation and evolution of molecular products in α-pinene secondary organic aerosol. *Proc. Natl. Acad. Sci. U. S. A.* 2015, *112* (46), 14168–14173.
- (2) Kristensen, K.; Jensen, L. N.; Glasius, M.; Bilde, M. The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alphapinene. *Environ. Sci.: Processes Impacts* 2017, *19* (10), 1220–1234.
- (3) Kristensen, K. Department of Chemistry, Aarhus University, Aarhus, Denmark. Personal communication, 2017.
- (4) Donahue, N. M.; Epstein, S. A.; Pandis, S. N.; Robinson, A. L. A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. *Atmos. Chem. Phys.* 2011, *11* (7), 3303–3318.
- Yasmeen, F.; Vermeylen, R.; Szmigielski, R.; Iinuma, Y.; Böge, O.; Herrmann, H.; Maenhaut, W.; Claeys, M. Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α- and β-pinene. *Atmos. Chem. Phys.* 2010, *10* (19), 9383–9392.
- Yasmeen, F.; Vermeylen, R.; Maurin, N.; Perraudin, E.; Doussin, J.-F.; Claeys, M. Characterisation of tracers for aging of α-pinene secondary organic aerosol using liquid chromatography/negative ion electrospray ionisation mass spectrometry. *Environ. Chem.* 2012, 9 (3), 236–246.
- Kenseth, C. M.; Huang, Y.; Zhao, R.; Dalleska, N. F.; Hethcox, J. C.; Stoltz, B. M.; Seinfeld, J. H. Synergistic O₃ + OH oxidation pathway to extremely low-volatility dimers revealed in β-pinene secondary organic aerosol. *Proc. Natl. Acad. Sci. U. S. A.* 2018, *115* (33), 8301–8306.
- (8) Zhao, R.; Kenseth, C. M.; Huang, Y.; Dalleska, N. F.; Seinfeld, J. H. Iodometry-Assisted Liquid Chromatography Electrospray Ionization Mass Spectrometry for Analysis of Organic Peroxides: An Application to Atmospheric Secondary Organic Aerosol. *Environ. Sci. Technol.* 2018, *52* (4), 2108–2117.
- (9) Moglioni, A. G.; García-Expósito, E.; Aguado, G. P.; Parella, T.; Branchadell, V.; Moltrasio, G. Y.; Ortuño, R. M. Divergent Routes to Chiral Cyclobutane Synthons from

(-)-α-Pinene and Their Use in the Stereoselective Synthesis of Dehydro Amino Acids. J.
Org. Chem. 2000, 65 (13), 3934–3940.

- (10) Fernández, F.; López, C.; Hergueta, A. R. Synthesis of a Precursor of Cyclobutane Carbocyclic Nucleosides from α-Pinene. *Tetrahedron* 1995, *51* (37), 10317–10322.
- (11) Kołodziejczyk, A.; Pyrcz, P.; Pobudkowska, A.; Błaziak, K.; Szmigielski, R. Physicochemical Properties of Pinic, Pinonic, Norpinic, and Norpinonic Acids as Relevant α-Pinene Oxidation Products. *J. Phys. Chem. B* 2019, *123* (39), 8261–8267.
- (12) Hergueta, A. R.; López, C.; Fernández, F.; Caamaño, O.; Blanco, J. M. Synthesis of two enantiomerically pure precursors of cyclobutane carbocyclic nucleosides. *Tetrahedron: Asymmetry* 2003, 14 (23), 3773–3778.