Iridium-Catalyzed Enantioselective and Diastereoselective Hydrogenation of 1,3-Disubstituted Isoquinolines

Alexia N. Kim,^{+,1} Aurapat Ngamnithiporn,^{+,1} Eric R. Welin¹, Martin T. Daiger¹, Christian U. Grünanger¹, Michael D. Bartberger², Scott C. Virgil¹, and Brian M. Stoltz^{*,1}

¹ Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

² 1200 Pharma LLC, 844 East Green Street, Suite 204, Pasadena, California 91101 stoltz@caltech.edu

Table of Contents:

Materials and Methods	SI 2
List of Abbreviations	SI 3
Syntheses of Hydroxymethyl 1,3-Disubstituted Isoquinolines	SI 3
Syntheses of 1,3-Disubstituted Isoquinolines with Different Directing Groups	SI 28
General Procedure for Hydrogenation Reactions	SI 31
Additional Optimization Results	SI 47
Experimental Procedure and Characterization Data for Product Transformations	SI 48
Determination of Enantiomeric Excess	SI 52
Crystal Structure Analysis of Product 8p (sample No.: d19110)	SI 57
Determination of Relative and Absolute Configuration of 12e (VCD and OR)	SI 65
References	SI 69
NMR and IR Spectra of New Compounds	SI 70
SFC Traces of Racemic and Enantioenriched Compounds	SI 281

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents.¹ Solvents were dried by passage through an activated alumina column under argon. Reaction progress was monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS. TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, panisaldehyde, or KMnO₄ staining. Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40-63 nm) was used for flash chromatography. ¹H NMR spectra were recorded on Bruker 400 MHz or Varian Mercury 300 MHz spectrometers and are reported relative to residual CHCl₃ (δ 7.26 ppm). ¹³C NMR spectra were recorded on Bruker 400 MHz spectrometer (100 MHz) and are reported relative to CHCl₃ (δ 77.16 ppm). ¹⁹F NMR spectra were recorded on Varian Mercury 300 MHz spectrometer (282 MHz). Data for ¹H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m =multiplet, br s = broad singlet, br d = broad doublet, app = apparent. Data for ${}^{13}C$ NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained using Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm⁻¹). Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm pathlength cell and are reported as: $[\alpha]_D^T$ (concentration in 10 mg/1 mL, solvent). Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. High resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+), or obtained from Caltech mass spectrometry laboratory.

A crystal was mounted on a polyimide MiTeGen loop with STP Oil Treatment and placed under a nitrogen stream. Low temperature (100K) X-ray data were collected with a Bruker AXS KAPPA APEX II diffractometer diffractometer running at 50 kV and 30 mA (Mo $K_{\alpha} = 0.71073$ Å; PHOTON 100 CMOS detector with TRIUMPH graphite monochromator). All diffractometer manipulations, including data collection, integration, and scaling were carried out using the Bruker APEX3 software. An absorption correction was applied using SADABS in point group 2. The space group was determined and the structure solved by intrinsic phasing using XT. Refinement was full-matrix least squares on F^2 using XL. All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were placed in idealized positions and the coordinates refined (each of the two disordered pairs were constrained to the same position). The isotropic displacement parameters of all hydrogen atoms were fixed at 1.2 times (1.5 times for methyl groups and alcohol) the U_{eq} value of the bonded atom. Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa Aesar and used as received unless otherwise stated.

List of Abbreviations:

ee – enantiomeric excess, SFC – supercritical fluid chromatography, TLC – thin-layer chromatography, IPA – isopropanol, LiHMDS – lithium bis(trimethylsilyl)amide, dba – dibenzylideneacetone, RBF – round-bottom flask, TFA – trifluoroacetic acid, TBAI – tetrabutylammonium iodide, Boc_2O – di-*tert*-butyl dicarbonate, HPLC – high-performance liquid chromatography, DMAP – 4-dimethylaminopyridine, THF – tetrahydrofuran, BnBr – benzyl bromide, CDI – 1,1'-carbonyldiimidazole

Syntheses of Hydroxymethyl 1,3-Disubstituted Isoquinolines

General sequence:

General procedure 1: Enolate alkylation of aryl bromide

tert-butyl 2-(2-(2-methyl-1,3-dioxolan-2-yl)phenyl)acetate (4a): This procedure has been adapted from a previous report.² In a Schlenk flask was added $P(t-Bu)_3$ •HBF₄ (119 mg, 0.41 mmol), $Pd_2(dba)_3$ (188 mg, 0.21 mmol), a solution of 2-(2-bromophenyl)-2-methyl-1,3-dioxolane

(3a) (1.0 g, 4.1 mmol, 0.42 M), and *tert*-Butyl acetate (0.95 g, 8.2 mmol), respectively. The reaction mixture was cooled to -78 °C and sparged with nitrogen for 15 minutes. A degassed solution of LiHMDS (1.72 g, 10.25 mmol, 1 M in toluene) was then added via syringe. The reaction mixture was degassed for an additional 15 minutes at -78 °C, and allowed to slowly warm to room temperature. The reaction was stirred at room temperature for 18 hours, and then quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with Et₂O twice. The combined organic phases were dried over MgSO₄, filtered, and the solvent was removed in vacuo. The crude product was purified by silica gel flash chromatography (5% EtOAc in hexanes) to afford **4a** as a yellow oil (1.05 g, 92% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.45 (m, 1H), 7.20 – 7.06 (m, 3H), 3.96 – 3.83 (m, 2H), 3.71 (s, 2H), 3.68 – 3.55 (m, 2H), 1.60 (s, 3H), 1.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 141.1, 132.6, 132.3, 128.2, 127.1, 126.4, 109.2, 80.4, 64.3, 40.4, 28.2, 28.2, 27.6; IR (Neat Film, NaCl) 3454, 3062, 2977, 2936, 2893, 1731, 1484, 1455, 1392, 1368, 1218, 1196, 1168, 1037, 952, 869, 763, 706 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₂₃O₄ [M+H]⁺: 279.1591, found 279.1589.

tert-butyl 2-(4-fluoro-2-(2-methyl-1,3-dioxolan-2-yl)phenyl)acetate (4b): Compound 4b was prepared from aryl bromide (2-(2-bromo-5-fluorophenyl)-2-methyl-1,3-dioxolane) (3b) using general procedure 1, and purified by column chromatography (10% EtOAc in hexanes) to afford 4b with impurities. The compound was then subjected to the second column chromatography (15% Et₂O in hexanes) to obtain 4b as a colorless solid (74 mg, 61% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, *J* = 10.3, 2.8 Hz, 1H), 7.15 (dd, *J* = 8.4, 5.7 Hz, 1H), 6.94 (td, *J* = 8.2, 2.9 Hz, 1H), 4.06 – 3.90 (m, 2H), 3.74 (s, 2H), 3.72 – 3.69 (m, 2H), 1.65 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 161.9 (d, *J* = 245.1 Hz), 143.9 (d, *J* = 6.2 Hz), 134.2 (d, *J* = 7.8 Hz), 127.9 (d, *J* = 3.3 Hz), 114.9 (d, *J* = 21.1 Hz), 113.5 (d, *J* = 10.3, 8.0, 5.8 Hz); IR (Neat Film, NaCl) 2980, 1732, 1613, 1493, 1412, 1392, 1368, 1340, 1256, 1200, 1179, 1147, 1037, 947, 878 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₂₂FO₄ [M+H]⁺: 297.1497, found 297.1494.

tert-butyl 2-(6-(2-methyl-1,3-dioxolan-2-yl)benzo[d][1,3]dioxol-5-yl)acetate (4c): Compound (5-bromo-6-(2-methyl-1,3-dioxolan-2-**4**c was prepared from aryl bromide vl)benzo[*d*][1,3]dioxole) (3c) using general procedure 1, and purified by column chromatography (5% to 15% EtOAc in hexanes) to afford 4c as a pale yellow oil (83.4 mg, 63%) yield): ¹H NMR (400 MHz, CDCl₃) δ 7.07 (s, 1H), 6.66 (s, 1H), 5.93 (s, 2H), 3.95 – 3.93 (m, 2H), 3.72 – 3.69 (m, 2H), 3.62 (s, 2H), 1.64 (s, 3H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 147.2, 146.7, 135.2, 125.9, 112.3, 109.1, 107.0, 101.3, 80.6, 64.3, 40.0, 28.3, 27.6; IR (Neat Film, NaCl) 2978, 2897, 1732, 1504, 1486, 1369, 1332, 1259, 1197, 1166, 1142, 1041, 929, 869, 935 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₂₃O₆ [M+H]⁺: 323.1489, found 323.1501.

tert-butyl 2-(2-(2-methyl-1,3-dioxolan-2-yl)naphthalen-1-yl)acetate (4d): Compound 4d was prepared from aryl bromide (2-(1-bromonaphthalen-2-yl)-2-methyl-1,3-dioxolane) (3d) using general procedure 1, and purified by column chromatography (0% to 5% EtOAc in hexanes) to afford 4d as a pale yellow oil (2.15 g, 98% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.76 (s, 2H), 7.48 (ddd, *J* = 7.9, 6.7, 1.4 Hz, 2H), 4.38 (s, 2H), 4.04 - 4.00 (m, 2H), 3.79 - 3.73 (m, 2H), 1.78 (s, 3H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 139.3, 133.6, 128.7, 128.6, 127.8, 126.5, 125.8, 124.3, 124.1, 109.7, 80.7, 64.4, 36.2, 28.2, 27.8. IR (Neat Film, NaCl) 2980, 2890, 1732, 1454, 1368, 1336, 1142, 1100, 1037, 951, 884, 870, 822, 750 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₀H₂₅O₄ [M+H]⁺: 329.1747, found 329.1739.

General procedure 2: Isoquinoline annulation and triflation

1-methylisoquinolin-3-yl trifluoromethanesulfonate (5a): This procedure has been adapted from a previous report.³ In a RBF were added ester **4a** (2.78 g, 10.0 mmol), anhydrous CH₂Cl₂ (75 mL, 0.13 M), and TFA (25 mL, 33% volume of CH₂Cl₂), respectively. The reaction was stirred at room temperature for 2 hours, and then concentrated in vacuo. The crude was transferred to a Schlenk tube, dissolved in MeCN (10 mL, 1 M), and aqueous NH₄OH (28–30%, 20 mL, 200% volume of MeCN). The tube was sealed with Kontes valve to prevent loss of gaseous ammonia and stirred at 70 °C. Within 1 hour, the yellow solid of the 3-hydroxyisoquinoline began to precipitate from the reaction solution. After stirring for 18 hours at 70 °C, the reaction was cooled to room temperature, then placed in a –20 °C freezer, and the yellow solid was collected via vacuum filtration. This yellow powder was then washed with cold MeCN and dried at high vacuum to provide 3-hydroxyisoquinoline intermediate (0.70 g, 4.39 mmol). If any starting material remains, the filtrate could be transferred to a flask and concentrated in vacuo to undergo a second condensation reaction.

To a separate flame-dried RBF containing CH₂Cl₂ (22 mL, 0.2 M) and distilled pyridine (3.6 mL, 44 mmol), the collected yellow powder (0.70 g, 4.39 mmol) was added, and the resulting mixture was cooled to 0 °C. Trifluoromethanesulfonic anhydride (1.5 mL, 8.8 mmol) was then added dropwise at 0 °C, and the reaction was stirred at 0 °C for 1 hour. The reaction was then quenched with saturated aqueous NaHCO₃ at 0 °C, and then slowly warmed to room temperature. The reaction was extracted with CH₂Cl₂, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography (10% EtOAc in hexanes) to afford **5a** as a pale yellow oil (1.11 g, 38% yield over 3 steps): ¹H NMR (400 MHz, CDCl₃) δ 8.17 (dd, *J* = 8.5, 1.0 Hz, 1H), 7.88 (dt, *J* = 8.3, 1.0 Hz, 1H), 7.76 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.67 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.42 (s, 1H), 2.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 151.3, 138.6, 131.5, 128.1, 127.8, 127.6, 126.1, 118.9 (q, *J* = 320.5 Hz), 109.0, 22.1; ¹⁹F NMR (282 MHz, CDCl₃) δ -73.0 IR (Neat Film, NaCl) 1624, 1600, 1563, 1422, 1327, 1213, 1138, 1116, 987, 958, 891, 832, 742, 616 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₁H₉F₃NO₃S [M+H]⁺: 292.0250, found 292.0253.

7-fluoro-1-methylisoquinolin-3-yl trifluoromethanesulfonate (5b): Compound **5b** was prepared from ester **4b** using general procedure 2 and purified by column chromatography (10% EtOAc in hexanes) to provide a pale brown oil (384 mg, 31% yield over 3 steps): ¹H NMR (400

MHz, CDCl₃) δ 7.90 (dd, J = 9.0, 5.3 Hz, 1H), 7.76 (dd, J = 9.6, 2.5 Hz, 1H), 7.56 (ddd, J = 8.9, 8.0, 2.5 Hz, 1H), 7.43 (s, 1H), 2.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4 (d, J = 251.1 Hz), 159.4 (d, J = 6.1 Hz), 151.1 (d, J = 3.3 Hz), 135.5, 130.3 (d, J = 8.7 Hz), 128.5 (d, J = 8.3 Hz), 122.2 (d, J = 25.6 Hz), 118.9 (q, J = 320.5 Hz), 109.8 (d, J = 21.8 Hz), 108.9, 22.1; ¹⁹F NMR (282 MHz, CDCl₃) δ –73.0, –109.0 (ddd, J = 9.5, 8.0, 5.4 Hz); IR (Neat Film, NaCl) 1598, 1573, 1516, 1416, 1209, 1136, 1114, 986, 960, 933, 875, 805, 764 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₁H₈F₄NO₃S [M+H]⁺: 310.0156, found 310.0149.

5-methyl-[1,3]dioxolo[4,5-g]isoquinolin-7-yl trifluoromethanesulfonate (5c): Compound **5c** was prepared from ester **4c** using general procedure 2 and purified by column chromatography (10 to 20% EtOAc in hexanes) to provide a white solid (608 mg, 58% yield over 3 steps): ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 1H), 7.23 (s, 1H), 7.10 (s, 1H), 6.15 (s, 2H), 2.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 151.9, 150.9, 149.2, 137.3, 124.8, 118.8 (q, *J* = 321.2 Hz), 108.4, 103.3, 102.2, 101.8, 22.2; ¹⁹F NMR (282 MHz, CDCl₃) δ –73.0; IR (Neat Film, NaCl) 2918, 1584, 1504, 1464, 1416, 1223, 1134, 1038, 964, 940, 873, 840 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₂H₉F₃NO₅S [M+H]⁺: 336.0148, found 336.0146.

4-methylbenzo[*f*]isoquinolin-2-yl trifluoromethanesulfonate (5d): Compound 5d was prepared from ester 4d using general procedure 2 and purified by column chromatography (5 to 10% EtOAc in hexanes) to provide a white solid (497 mg, 65% yield over 3 steps): ¹H NMR (400 MHz, CDCl₃) δ 8.63 – 8.57 (m, 1H), 8.15 (s, 1H), 8.01 – 7.95 (m, 2H), 7.90 (d, *J* = 9.2 Hz, 1H), 7.81 – 7.73 (m, 2H), 3.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 152.5, 138.6, 133.3, 129.6, 129.1, 128.9, 128.6, 127.8, 125.8, 123.6, 122.2, 118.8 (q, *J* = 321.2 Hz), 105.1, 22.4; ¹⁹F NMR (282 MHz, CDCl₃) δ –78.3; IR (Neat Film, NaCl) 1588, 1416, 1377, 1207, 1180, 1138, 972, 878, 846, 817, 754 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₅H₁₁F₃NO₃S [M+H]⁺: 342.0406, found 342.0399.

General procedure 3: Suzuki cross-coupling

1-methyl-3-phenylisoquinoline (6a): This procedure has been adapted from a previous report.⁴ To a flame-dried 20-mL scintillation vial capped with a PTFE-lined septum was added XPhos Pd G3 (11.63 mg, 0.014 mmol) and phenyl boronic acid (126 mg, 1.03 mmol). The reaction vial was then evacuated and backfilled with N₂ three times. The isoquinoline triflate **5a** (200 mg, 0.687 mmol) in degassed THF (2 mL, 0.3 M) was then added to the vial, followed by degassed 0.5 M K₃PO₄ solution (4 mL, 0.2 M). The reaction was then stirred at 40 °C for 2 hours. Afterwards, the reaction was diluted with water and the aqueous layer was extracted with Et₂O. The combined organic phases were dried over Na₂SO₄, concentrated in vacuo, and purified by column chromatography (5% EtOAc in hexanes) to afford **6a** as a white solid (138 mg, 92% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.13 (m, 3H), 7.93 (s, 1H), 7.86 (dt, *J* = 8.3, 1.0 Hz, 1H), 7.67 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.57 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.52 – 7.48 (m, 2H), 7.42 – 7.38 (m, 1H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 150.2, 140.0, 136.9, 130.2, 128.9, 128.4, 127.8, 127.1, 126.9, 126.7, 125.8, 115.4, 22.9; IR (Neat Film, NaCl) 3060, 1621, 1589, 1571, 1501, 1440, 1390, 1332, 1030, 902, 880, 786, 765, 692 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₄N [M+H]⁺: 220.1121, found 220.1129.

3-(4-(*tert***-butyl)phenyl)-1-methylisoquinoline (6b):** Compound **6b** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a pale yellow oil (177 mg, 93% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.4 Hz, 1H) 8.06 (d, J = 8.5 Hz, 2H), 7.90 (s, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.66 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.57 – 7.52 (m, 3H), 3.04 (s, 3H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 151.5, 150.3, 137.3, 136.9, 130.1, 127.7, 126.8, 126.7, 126.6, 125.8, 125.8, 115.0, 34.8,

31.5, 22.8; IR (Neat Film, NaCl) 2961, 1622, 1591, 1568, 1515, 1442, 1390, 1362, 1333, 1268, 1112, 1017, 837, 754, 743, 685 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₀H₂₂N [M+H]⁺: 276.1747, found 276.1749.

3-([1,1'-biphenyl]-4-yl)-1-methylisoquinoline (6c): Compound **6c** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a colorless solid (191 mg, 94% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.22 (m, 2H), 8.14 (d, *J* = 8.4 Hz, 1H), 7.98 (s, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.75 – 7.73 (m, 2H), 7.70 – 7.67 (m, 3H), 7.58 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.50 – 7.46 (m, 2H), 7.39 – 7.37 (m, 1H), 3.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 149.7, 141.2, 141.0, 138.9, 136.9, 130.2, 128.9, 127.8, 127.6, 127.5, 127.5, 127.2, 126.9, 126.8, 125.8, 115.2, 22.9; IR (Neat Film, NaCl) 3028, 1621, 1568, 1488, 1440, 1389, 1334, 842, 766, 730, 696 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₂H₁₈N [M+H]⁺: 296.1434, found 296.1426.

3-(4-methoxyphenyl)-1-methylisoquinoline (6d): Compound **6d** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to afford a white solid (79 mg, 93% yield): ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.07 (m, 3H), 7.84 (s, 1H), 7.81 (d, *J* = 8.5, 1H), 7.64 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 7.53 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.06 – 7.01 (m, 2H), 3.88 (s, 3H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 158.4, 149.8, 136.9, 132.6, 130.0, 128.2, 127.5, 126.4, 126.3, 125.7, 114.1, 114.1, 55.4, 22.7; IR (Neat Film, NaCl) 3060, 2955, 2835, 1608, 1568, 1514, 1439, 1390, 1290, 1249, 1174, 1034, 833, 751, 730 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₆NO [M+H]⁺: 250.1226, found 250.1220.

3-(4-fluorophenyl)-1-methylisoquinoline (6e): Compound **6e** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (10% EtOAc in hexanes) to provide a white solid (155 mg, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.07 (m, 3H), 7.89 – 7.81 (m, 2H), 7.68 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.58 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.20 – 7.16 (m, 2H), 3.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3 (d, J = 247.3 Hz), 162.1, 158.8, 149.1, 136.9, 136.0 (d, J = 3.3 Hz), 130.3, 128.8 (d, J = 8.2 Hz), 127.7, 127.0, 126.6, 125.8, 115.8, 115.6, 115.1, 22.8; ¹⁹F NMR (282 MHz, CDCl₃) δ –114.2; IR (Neat Film, NaCl) 1605, 1570, 1510, 1440, 1390, 1332, 1231, 1156, 836, 749, 723 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₃FN [M+H]⁺: 238.1027, found 238.1030.

1-methyl-3-(4-(trifluoromethyl)phenyl)isoquinoline (6f): Compound **6f** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (2% to 3% EtOAc in hexanes) to afford a white solid (89 mg, 91% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.1 Hz, 2H), 8.15 (d, *J* = 8.4, 1H), 7.96 (s, 1H), 7.88 (d, *J* = 8.2 Hz, 1H), 7.78 – 7.73 (m, 2H), 7.73 – 7.67 (m, 1H), 7.63 – 7.59 (m, 1H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 148.5, 143.3, 136.7, 130.4, 130.2 (q, *J* = 32.5 Hz), 127.9, 127.5, 127.3, 127.1, 125.8, 125.7 (q, *J* = 3.8 Hz), 124.4 (q, *J* = 271.9 Hz), 116.1, 22.8; ¹⁹F NMR (282 MHz, CDCl₃) δ –62.4; IR (Neat Film, NaCl) 3070, 2357, 1622, 1573, 1418, 1390, 1324, 1162, 1122, 1066, 1015, 842, 754, 742, 682 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₃F₃N [M+H]⁺: 288.0995, found 288.0988.

4-(1-methylisoquinolin-3-yl)benzonitrile (6g): Compound 6g was prepared from triflate 5a using general procedure 3 and purified by column chromatography (10% to 20% EtOAc in hexanes) to provide a white solid (144 mg, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.38 –

8.22 (m, 2H), 8.16 (d, J = 8.3 Hz, 1H), 7.99 (s, 1H), 7.89 (d, J = 8.3, 1H), 7.82 – 7.75 (m, 2H), 7.73 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.64 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 147.6, 144.0, 136.6, 132.7, 130.7, 128.0, 127.9, 127.6, 127.3, 125.9, 119.3, 116.6, 111.8, 22.8; IR (Neat Film, NaCl) 2224, 1618, 1570, 1508, 1441, 1390, 1334, 878, 844, 748, 731 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₃N₂ [M+H]⁺: 245.1073, found 245.1070.

1-methyl-3-(3-nitrophenyl)isoquinoline (6h): Compound **6h** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (10% EtOAc in hexanes) to provide a white solid (139 mg, 77% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.01 (t, *J* = 2.0 Hz, 1H), 8.51 (ddd, *J* = 7.8, 1.8, 1.1 Hz, 1H), 8.24 (ddd, *J* = 8.2, 2.3, 1.1 Hz, 1H), 8.16 (dd, *J* = 8.3, 1.0 Hz, 1H), 8.01 (s, 1H), 7.90 (dd, *J* = 8.1, 0.7 Hz, 1H), 7.72 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 7.72 – 7.59 (m, 2H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 149.0, 147.3, 141.7, 136.6, 132.8, 130.6, 129.7, 127.9, 127.8, 127.2, 125.9, 123.0, 121.9, 116.0, 22.8; IR (Neat Film, NaCl) 1619, 1568, 1524, 1442, 1390, 1350, 880, 806, 749, 692 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₃N₂O₂ [M+H]⁺: 265.0972, found 265.0974.

1-methyl-3-(3,4,5-trifluorophenyl)isoquinoline (6i): Compound **6i** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to afford a white solid (103 mg, 87% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.4, 1H), 7.86 – 7.78 (m, 4H), 7.72 – 7.68 (m, 1H), 7.65 – 7.58 (m, 1H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 151.6 (ddd, *J* = 248.4, 10.1, 4.1 Hz), 146.5, 140.0 (dt, *J* = 252.6, 15.7 Hz), 136.6, 136.0 (td, *J* = 7.5, 4.5 Hz), 130.6, 127.8, 127.7, 127.1, 125.8, 115.4, 110.9 – 110.7 (m), 22.7; ¹⁹F NMR (282 MHz, CDCl₃) δ –134.4 (dd, *J* = 20.5, 9.2 Hz), -161.1 – -161.3 (m); IR (Neat Film, NaCl) 1619, 1570, 1526, 1446, 1392, 1352, 1237, 1034, 879, 847, 753 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₁F₃N [M+H]⁺: 274.0838, found 274.0841.

1-methyl-3-(naphthalen-2-yl)isoquinoline (6j): Compound **6j** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a white solid (159 mg, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 8.27 (dd, J = 8.6, 1.8 Hz, 1H), 8.16 (dq, J = 8.3, 1.0 Hz, 1H), 8.07 (s, 1H), 8.00 – 7.96 (m, 2H), 7.91 – 7.86 (m, 2H), 7.70 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.59 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.56 – 7.46 (m, 2H), 3.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 149.9, 137.2, 137.0, 133.9, 133.5, 130.2, 128.9, 128.5, 127.8, 127.0, 126.8, 126.3, 126.3, 125.8, 124.9, 115.7, 22.9; IR (Neat Film, NaCl) 3059, 1621, 1585, 1567, 1508, 1439, 1390, 879, 848, 816, 744 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₀H₁₆N [M+H]⁺: 270.1277, found 270.1270.

3-(3,5-dimethylphenyl)-1-methylisoquinoline (6k): Compound **6k** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography to provide a white solid (156 mg, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 8.4, 1.1 Hz, 1H), 7.90 (s, 1H), 7.85 (dd, J = 8.2, 0.7 Hz, 1H), 7.75 (s, 2H), 7.66 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.56 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.05 (s, 1H), 3.05 (s, 3H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 150.5, 139.9, 138.3, 136.9, 130.2, 130.1, 127.7, 126.8, 126.7, 125.8, 125.0, 115.4, 22.8, 21.7; IR (Neat Film, NaCl) 2919, 2358, 1622, 1582, 1568, 1443, 1391, 1335, 874, 846, 786, 750, 711 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₈H₁₈N [M+H]⁺: 248.1434, found 248.1434.

3-(3,4-dimethoxyphenyl)-1-methylisoquinoline (6l): Compound **6l** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (20% EtOAc in hexanes)

to provide a white solid (195 mg, 99% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.4, 1H), 7.89 – 7.81 (m, 2H), 7.77 (d, J = 2.1 Hz, 1H), 7.71 – 7.61 (m, 2H), 7.55 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 4.04 (s, 3H), 3.95 (s, 3H), 3.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 149.8, 149.6, 149.3, 137.0, 132.9, 130.2, 127.6, 126.7, 126.5, 125.8, 119.5, 114.5, 111.4, 110.3, 56.1, 22.8; IR (Neat Film, NaCl) 2936, 2833, 1568, 1516, 1454, 1436, 1317, 1259, 1236, 1170, 1026, 874, 817, 751 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₈H₁₈NO₂ [M+H]⁺: 280.1332, found 280.1337.

1-methyl-3-(*o*-tolyl)isoquinoline (6m): Compound 6m was prepared from triflate 5a using general procedure 3 and purified by column chromatography (10% EtOAc in hexanes) to provide a white solid (153 mg, 96% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.4, 1H), 7.84 (d, *J* = 8.3, 1H), 7.70 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.65 – 7.57 (m, 2H), 7.53 – 7.45 (m, 1H), 7.32 – 7.30 (m, 3H), 3.04 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 152.7, 140.9, 136.5, 136.3, 130.9, 130.1, 128.1, 127.5, 127.0, 126.2, 126.0, 125.7, 118.9, 22.6, 20.6; IR (Neat Film, NaCl) 3053, 2950, 2920, 2355, 1622, 1584, 1567, 1498, 1446, 1392, 1360, 1330, 1144, 1033, 969, 906, 884, 763, 752, 726 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₆N [M+H]⁺: 234.1277, found 234.1286.

3-(furan-2-yl)-1-methylisoquinoline (6n): Compound **6n** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a white solid (106 mg, 99% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 1H), 7.86 (s, 1H), 7.80 (dd, *J* = 8.4 Hz, 1H), 7.67 – 7.59 (m, 1H), 7.57 – 7.49 (m, 2H), 7.13 (dd, *J* = 3.4, 0.8 Hz, 1H), 6.56 (dd, *J* = 3.4, 1.8 Hz, 1H), 2.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 154.4, 142.9, 142.3, 136.5, 130.2, 127.6, 126.7, 126.6, 125.8, 113.0, 112.0, 108.1, 22.6; IR (Neat Film, NaCl) 3067, 1622, 1568, 1488, 1447, 1390, 1325, 1288, 1216, 1157, 1007, 970, 883, 814, 736 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₄H₁₂NO [M+H]⁺: 210.0913, found 210.0910.

1-methyl-3-(thiophen-2-yl)isoquinoline (60): Compound **60** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (3% EtOAc in hexanes) to provide a white solid (103 mg, 92% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dt, J = 8.4 Hz, 1H), 7.82 (s, 1H), 7.79 (dd, J = 8.2 Hz, 1H), 7.69 (dd, J = 3.6, 1.1 Hz, 1H), 7.64 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.52 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.38 (dd, J = 5.1, 1.1 Hz, 1H), 7.14 (dd, J = 5.0, 3.6 Hz, 1H), 2.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 145.5, 145.4, 136.6, 130.2, 128.1, 127.4, 126.7, 126.6, 125.8, 123.8, 113.1, 22.5; IR (Neat Film, NaCl) 3068, 1620, 1586, 1568, 1446, 1387, 1330, 1238, 1194, 1036, 876, 820, 748, 704 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₄H₁₂NS [M+H]⁺: 226.0685, found 226.0680.

1-methyl-3-(thiophen-3-yl)isoquinoline (6p): Compound **6p** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a white solid (148 mg, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (dd, J = 8.4, 1.0 Hz, 1H), 8.04 (dd, J = 3.1, 1.3 Hz, 1H), 7.81 (dt, J = 8.2, 0.9 Hz, 1H), 7.79 (s, 1H), 7.73 (dd, J = 5.0, 1.3 Hz, 1H), 7.65 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.54 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.42 (dd, J = 5.0, 3.1 Hz, 1H), 3.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 146.4, 142.7, 136.9, 130.2, 127.6, 126.7, 126.6, 126.3, 126.2, 125.8, 123.2, 114.7, 22.8; IR (Neat Film, NaCl) 3056, 2920, 1622, 1591, 1568, 1496, 1446, 1388, 1317, 874, 842, 795, 749, 696 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₄H₁₂NS [M+H]⁺: 226.0685, found 226.0687.

1-methyl-3-(1-methyl-1*H***-pyrazol-4-yl)isoquinoline (6q):** Compound **6q** was prepared from triflate **5a** using general procedure 3 and purified by column chromatography (50% to 60% EtOAc in hexanes) to provide a white solid (112 mg, 99% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 1H), 8.04 – 8.00 (m, 2H), 7.77 (dd, J = 8.2, 1.1 Hz, 1H), 7.67 – 7.60 (m, 2H),

7.54 – 7.47 (m, 1H), 3.98 (s, 3H), 2.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 137.4, 136.8, 130.1, 128.9, 127.1, 126.2, 126.1, 125.7, 113.3, 39.1, 22.6; IR (Neat Film, NaCl) 2940, 2351, 1620, 1601, 1568, 1556, 1493, 1416, 1182, 983, 840, 750, 702 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₄H₁₄N₃ [M+H]⁺: 224.1182, found 224.1176.

1-methyl-3-(pyridin-2-yl)isoquinoline (6r): Compound 6r was prepared from triflate 5a using a procedure adapted from a previous report.⁵ To a microwave vial was added flame-dried K₂CO₃ (142 mg, 1.03 mmol), Pd(OAc)₂ (5.8 mg, 0.026 mmol), P(t-Bu)₃•HBF₄ (15 mg, 0.052 mmol), and the N-oxide (147 mg, 1.55 mmol). The vial was then evacuated and backfilled with argon three times. A solution of **5a** (150 mg, 0.52 mmol) in toluene (2 mL, 0.3 M) was then added, and the reaction was stirred at 130 °C overnight. The reaction was then cooled to room temperature, filtered through celite, and dissolved in CH₂Cl₂ (10 mL, 0.05 M). The reaction flask was then cooled to 0 °C and PCl₃ (0.27 mL, 3.1 mmol) was added dropwise, then the reaction stirred for 30 minutes at 0 °C. The reaction was then quenched with saturated aqueous K₂CO₃, extracted with EtOAc, and dried over Na₂SO₄. The crude product was purified by column chromatography (30% EtOAc in hexanes + 1% NEt₃) to provide a pale yellow solid (56 mg, 50% yield over 2 steps); ¹H NMR (400 MHz, CDCl₃) δ 8.72 (dd, J = 4.8, 1.9 Hz, 1H), 8.62 (s, 1H), 8.56 (dd, J =8.0, 1.1 Hz, 1H), 8.14 (dd, J = 8.3, 1.0 Hz, 1H), 7.95 (dt, J = 8.2, 1.0 Hz, 1H), 7.84 (td, J = 7.7, 1.8 Hz, 1H), 7.68 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.60 (ddd, J = 8.2, 6.9, 1.4 Hz, 1H), 7.29 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 156.9, 149.4, 148.7, 137.1, 136.9, 130.2, 128.6, 127.7, 127.5, 125.8, 123.3, 121.4, 116.5, 22.9; IR (Neat Film, NaCl) 3053, 3004, 2916, 1621, 1580, 1568, 1474, 1443, 1426, 1391, 1335, 1142, 891, 796, 742, 681, 624 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₅H₁₃N₂ [M+H]⁺: 221.1073, found 221.1076.

7-fluoro-1-methyl-3-phenylisoquinoline (S1a): Compound **S1a** was prepared from triflate **5b** using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a white solid (110 mg, 93% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.11 (m, 2H), 7.90 (s, 1H), 7.85 (dd, J = 9.2, 5.7 Hz, 1H), 7.73 – 7.68 (m, 1H), 7.54 – 7.48 (m, 2H), 7.48 – 7.38 (m, 2H), 2.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7 (d, J = 248.3 Hz), 158.0 (d, J = 5.8

Hz), 149.8 (d, J = 2.8 Hz), 139.7, 133.9, 130.3 (d, J = 8.5 Hz), 128.9, 128.5, 127.3 (d, J = 7.8 Hz), 127.0, 120.6 (d, J = 25.3 Hz), 114.9 (d, J = 1.7 Hz), 109.4 (d, J = 21.0 Hz), 22.8; ¹⁹F NMR (282 MHz, CDCl₃) δ –109.7 – –111.8 (m); IR (Neat Film, NaCl) 3031, 2358, 1576, 1506, 1446, 1393, 1372, 1313, 1230, 1183, 1028, 972, 922, 904, 881, 822, 777, 764, 704 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₃FN [M+H]⁺: 238.1027, found 238.1027.

7-fluoro-3-(4-methoxyphenyl)-1-methylisoquinoline (S1b): Compound **S1b** was prepared from triflate **5b** using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a white solid (110 mg, 99% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.04 (m, 2H), 7.87 – 7.81 (m, 2H), 7.70 (dd, J = 9.9, 2.6 Hz, 1H), 7.44 (ddd, J = 9.0, 8.3, 2.5 Hz, 1H), 7.06 – 6.99 (m, 2H), 3.88 (s, 3H), 2.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4 (d, J = 248.5 Hz), 160.1, 157.7 (d, J = 5.7 Hz), 149.4 (d, J = 2.8 Hz), 133.9, 132.2, 130.0 (d, J = 8.5 Hz), 128.1, 126.7 (d, J = 7.7 Hz), 120.5 (d, J = 25.3 Hz), 114.2, 113.7 (d, J = 1.8 Hz), 109.3 (d, J = 20.9 Hz), 55.4, 22.7; ¹⁹F NMR (282 MHz, CDCl₃) δ –111.9 (ddd, J = 9.3, 9.1, 5.7 Hz); IR (Neat Film, NaCl) 1608, 1514, 1443, 1393, 1288, 1252, 1186, 1029, 878, 863, 836, 821 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₅FNO [M+H]⁺: 268.1132, found 268.1133.

7-fluoro-1-methyl-3-(4-(trifluoromethyl)phenyl)isoquinoline (S1c): Compound **S1c** was prepared from triflate **5b** using general procedure 3 and purified by column chromatography (5% EtOAc in hexanes) to provide a white solid (150 mg, 98% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.0 Hz, 2H), 7.94 (s, 1H), 7.90 – 7.85 (m, 1H), 7.74 (d, J = 8.0 Hz, 2H), 7.71 – 7.69 (m, 1H), 7.53 – 7.43 (m, 1H), 2.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1 (d, J = 249.4 Hz), 158.4 (d, J = 6.2 Hz), 148.1, 143.0, 133.7, 130.4 (d, J = 8.5 Hz), 130.2 (q, J = 32.4 Hz), 127.8 (d, J = 8.1 Hz), 127.2, 125.8 (q, J = 3.8 Hz), 124.5 (q, J = 272.7 Hz), 120.9 (d, J = 24.9 Hz), 115.6, 109.5 (d, J = 21.4 Hz), 22.8 ; ¹⁹F NMR (282 MHz, CDCl₃) δ –62.5, –110.2 (ddd, J = 9.9, 8.2, 5.5 Hz); IR (Neat Film, NaCl) 1592, 1418, 1393, 1330, 1157, 1126, 1107, 1067, 880, 868, 847, 816 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₂NF₄ [M+H]⁺: 306.0900, found 306.0895.

5-methyl-7-phenyl-[1,3]dioxolo[4,5-g]**isoquinoline (S1d):** Compound **S1d** was prepared from triflate **5c** using general procedure 3 and purified by column chromatography (10% EtOAc in hexanes) to provide a white solid (153 mg, 97% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.2 Hz, 2H), 7.77 (s, 1H), 7.52 – 7.44 (m, 2H), 7.41 – 7.32 (m, 2H), 7.11 (s, 1H), 6.10 (s, 2H), 2.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 150.5, 149.5 148.1, 140.0, 135.1, 128.7, 128.1, 126.8, 123.5, 115.1, 103.4, 101.9, 101.6, 23.0; IR (Neat Film, NaCl) 2914, 1591, 1486, 1462, 1232, 1189, 1039, 945, 878, 846, 695, 684 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₄NO₂ [M+H]⁺: 264.1019, found 264.1021.

7-(3,4-dimethoxyphenyl)-5-methyl-[1,3]dioxolo[4,5-*g***]isoquinoline (S1e):** Compound **S1e** was prepared from triflate **5c** using general procedure 3 at 65 °C and purified by column chromatography via dry loading (40% EtOAc in hexanes) to provide a white solid (202 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 2.1 Hz, 1H), 7.69 (s, 1H), 7.60 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.34 (s, 1H), 7.09 (s, 1H), 6.96 (d, *J* = 8.4 Hz, 1H), 6.09 (s, 2H), 4.02 (s, 3H), 3.94 (s, 3H), 2.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 150.5, 149.3, 149.2, 147.9, 135.2, 134.3, 133.0, 123.2, 119.1, 114.3, 111.2, 110.0, 103.3, 101.8, 101.5, 56.0, 56.0, 23.0; IR (Neat Film, NaCl) 2935, 1591, 1517, 1462, 1267, 1230, 1165, 1143, 1024, 872, 731 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₉H₁₈NO₄ [M+H]⁺: 324.1230, found 324.1229.

4-methyl-2-phenylbenzo[*f*]isoquinoline (S1f): Compound S1f was prepared from triflate 5d using general procedure 3 and the product was collected via vacuum filtration to provide a white solid (246 mg, 63% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.55 – 8.40 (m, 2H), 7.96 – 7.88 (m, 2H), 7.73 (t, *J* = 8.7 Hz, 1H), 7.69 – 7.61 (m, 1H), 7.54 (t, *J* = 8.3 Hz, 1H), 7.45 – 7.42 (m, 2H), 7.26 (td, *J* = 7.6, 1.7 Hz, 2H), 7.16 (td, *J* = 7.3, 1.7 Hz, 1H), 2.81 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 157.9, 152.0, 140.3, 135.6, 133.4, 129.3, 128.8, 128.7, 128.5, 128.4, 127.7, 127.2, 127.1, 124.4, 123.4, 122.9, 111.0, 23.1; IR (Neat Film, NaCl) 2342, 1574, 1506, 1483, 1444, 1386, 1242, 1028, 876, 824, 760, 725, 692 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₀H₁₆N [M+H]⁺: 270.1277, found 270.1289.

(3-phenylisoquinolin-1-yl)methanol (7a): This procedure has been adapted from a previous report.⁴ To a 20-mL microwave vial containing a stir bar was added SeO₂ (140 mg, 1.26 mmol), isoquinoline **6a** (138 mg, 0.63 mmol), and 1,4-dioxane (13 mL, 0.05 M). The reaction vial was then sealed and heated to 110 $^{\circ}$ C while stirring for 2 hours. The reaction was then cooled to room temperature, filtered through celite, and rinsed with EtOAc. The filtrate was then concentrated in vacuo to afford the aldehyde intermediate, which was used in the next step without further purification.

A scintillation vial containing the crude in 4:1 DCM:MeOH (0.1 M) was added sodium borohydride (24 mg, 0.63 mmol) at room temperature. The reaction was stirred until no starting material remained by TLC, and then quenched by the addition of citric acid monohydrate (132 mg, 0.63 mmol). The reaction was stirred for an additional 10 minutes then basified by the addition of saturated aqueous NaHCO₃. The layers were separated and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (20% acetone in hexanes) to afford **7a** as a white solid (100 mg, 68% yield over 2 steps): ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.15 (d, *J* = 7.0 Hz, 2H), 8.03 (s, 1H), 7.94 – 7.92 (m, 2H), 7.73 (ddd, *J* = 8.3, 6.9, 1.1 Hz, 1H), 7.61 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.46 – 7.42 (m, 1H), 5.31 (s, 2H), 5.26 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 148.7, 138.9, 137.1, 130.9, 129.0, 128.9, 128.0, 127.5, 127.0, 124.2, 123.3, 116.3, 61.6; IR (Neat Film, NaCl) 3378, 3060, 2867, 1624, 1574, 1502, 1461, 1443, 1370, 1331, 1304, 1088, 1072, 1024, 1009, 882, 782, 766,

693 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₆H₁₄NO [M+H]⁺: 236.1070, found 236.1078.

((3-(4-(*tert*-butyl)phenyl)isoquinolin-1-yl)methanol (7b): Compound 7b was prepared from isoquinoline 6b using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (162 mg, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.06 (m, 2H), 8.00 (s, 1H), 7.97 – 7.85 (m, 2H), 7.72 (ddd, J = 8.4, 6.9, 1.2 Hz, 1H), 7.62 – 7.58 (m, 1H), 7.58 – 7.52 (m, 2H), 5.30 (s, 3H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 152.1, 148.7, 137.1, 136.2, 130.8, 127.9, 127.3, 126.7, 125.9, 124.1, 123.3, 115.9, 61.5, 34.9, 31.5; IR (Neat Film, NaCl) 3385, 2958, 1626, 1574, 1514, 1446, 1416, 1360, 1333, 1265, 1088, 1014, 841, 744, 680 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₀H₂₂NO [M+H]⁺: 292.1696, found 292.1696.

(3-([1,1'-biphenyl]-4-yl)isoquinolin-1-yl)methanol (7c): Compound 7c was prepared from isoquinoline 6c using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a colorless solid (181 mg, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.20 (m, 2H), 8.07 (s, 1H), 7.98 – 7.88 (m, 2H), 7.81 – 7.66 (m, 5H), 7.62 (ddd, J = 8.4, 6.9, 1.2 Hz, 1H), 7.49 (dd, J = 8.2, 6.8 Hz, 2H), 7.43 – 7.34 (m, 1H), 5.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 148.3, 141.7, 140.7, 137.8, 137.1, 130.9, 129.0, 128.0, 127.7, 127.6, 127.3, 127.2, 124.2, 123.3, 116.2, 61.6; IR (Neat Film, NaCl) 3382, 3060, 2359, 1623, 1574, 1488, 1445, 1412, 1374, 1334, 1088, 1006, 840, 766, 729, 697 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₂H₁₈NO [M+H]⁺: 312.1382, found 312.1383.

(3-(4-methoxyphenyl)isoquinolin-1-yl)methanol (7d): Compound 7d was prepared from isoquinoline 6d using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (48 mg, 73% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.07 (m, 2H), 7.93 (s, 1H), 7.91 – 7.85 (m, 2H), 7.69 (ddd, *J* = 8.2, 6.9, 1.1 Hz, 1H), 7.56 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.06 – 7.03 (m, 2H), 5.28 (s, 3H), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 157.0, 148.3, 137.1, 131.4, 130.7, 128.1, 127.7, 127.0, 123.7, 123.1, 115.0, 114.2, 61.4, 55.4; IR (Neat Film, NaCl) 3376, 2928, 2836, 1608, 1573, 1515, 1442, 1372, 1334, 1287, 1250, 1175, 1087, 1032, 1010, 832, 750, 730 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₆NO₂ [M+H]⁺: 266.1176, found 266.1185.

(3-(4-fluorophenyl)isoquinolin-1-yl)methanol (7e): Compound 7e was prepared from isoquinoline 6e using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a colorless solid (149 mg, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 8.9, 5.4 Hz, 2H), 7.96 (s, 1H), 7.95 – 7.89 (m, 2H), 7.73 (ddd, J = 8.3, 6.9, 1.1 Hz, 1H), 7.61 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.21 (dd, J = 8.9, 8.5 Hz, 2H), 5.30 (s, 2H), 5.17 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 163.5 (d, J = 248.3 Hz), 157.5, 147.8, 137.0, 135.1 (d, J = 3.2 Hz), 131.0, 128.7 (d, J = 8.2 Hz), 127.9, 127.6, 124.1, 123.3, 116.0, 115.8, 61.6; ¹⁹F NMR (282 MHz, CDCl₃) δ –113.3 – –113.4 (m); IR (Neat Film, NaCl) 3382, 3059, 2354, 1622, 1604, 1574, 1512, 1446, 1331, 1230, 1157, 1087, 1011, 837, 750, 725 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₆H₁₃FNO [M+H]⁺: 254.0974, found 254.0976.

(3-(4-(trifluoromethyl)phenyl)isoquinolin-1-yl)methanol (7f): Compound 7f was prepared from isoquinoline 6f using general procedure 4 and purified by column chromatography (10% to 20% EtOAc in hexanes) to provide a white solid (23 mg, 25% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 7.8 Hz, 2H), 8.07 (s, 1H), 8.00 – 7.92 (m, 2H), 7.82 – 7.73 (m, 3H), 7.70 – 7.61 (m, 1H), 5.32 (s, 2H), 5.10 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 147.1, 142.3, 136.8, 131.2, 130.7 (q, J = 32.5 Hz), 128.2, 128.1, 127.2, 125.9 (q, J = 3.8 Hz), 124.6, 124.4 (q, J = 273.7 Hz), 123.4, 117.2, 61.6; ¹⁹F NMR (282 MHz, CDCl₃) δ –62.5; IR (Neat Film,

NaCl) 3408, 1623, 1574, 1418, 1324, 1166, 1111, 1075, 1014, 842, 753, 682 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₇H₁₃F₃NO [M+H]⁺: 304.0944, found 304.0934.

4-(1-(hydroxymethyl)isoquinolin-3-yl)benzonitrile (7g): Compound **7g** was prepared from isoquinoline **6g** using general procedure 4 and purified by column chromatography (30% EtOAc in hexanes) to provide a white solid (138 mg, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.18 (m, 2H), 8.09 (s, 1H), 7.97 (m, 2H), 7.86 – 7.74 (m, 3H), 7.68 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 5.32 (s, 2H), 4.99 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 146.5, 143.2, 136.7, 132.8, 131.4, 128.5, 128.2, 127.4, 124.7, 123.5, 119.0, 117.7, 112.3, 61.7; IR (Neat Film, NaCl) 3404, 2895, 2358, 2224, 1416, 1332, 1303, 1085, 1006, 840, 764, 682 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₃N₂O [M+H]⁺: 261.1022, found 261.1032.

(3-(3-nitrophenyl)isoquinolin-1-yl)methanol (7h): Compound 7h was prepared from isoquinoline 6h using general procedure 4 and purified by column chromatography (20% EtOAc in CH₂Cl₂) to provide a white solid (67 mg, 38% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.95 (t, *J* = 2.0 Hz, 1H), 8.52 (dt, *J* = 7.9, 1.3 Hz, 1H), 8.27 (ddd, *J* = 8.2, 2.3, 1.1 Hz, 1H), 8.11 (s, 1H), 8.04 – 7.90 (m, 2H), 7.78 (ddd, *J* = 8.0, 6.9, 1.2 Hz, 1H), 7.73 – 7.60 (m, 2H), 5.33 (s, 2H), 4.96 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 149.0, 146.1, 140.7, 136.8, 132.7, 131.4, 129.9, 128.4, 128.2, 124.7, 123.5, 123.4, 121.6, 117.2, 61.7; IR (Neat Film, NaCl) 3389, 2614, 1538, 1520, 1505, 1353, 1333, 1088, 1007, 892, 751, 690 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₃N₂O₃ [M+H]⁺: 281.0921, found 281.0930.

(3-(3,4,5-trifluorophenyl)isoquinolin-1-yl)methanol (7i): Compound 7i was prepared from isoquinoline 6i using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (90 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.89 (m, 3H), 7.84 – 7.71 (m, 3H), 7.65 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 5.30 (s, 2H), 4.89 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 151.7 (ddd, J = 249.3, 10.2, 4.1 Hz), 145.4 (d, J = 2.5 Hz), 140.2 (dt, J = 253.9, 15.7 Hz), 136.7, 135.1 (td, J = 7.6, 4.5 Hz), 131.4, 128.3, 128.0, 124.5, 123.4, 116.6 (d, J = 1.4 Hz), 110.9 – 110.7 (m), 61.7; ¹⁹F NMR (282 MHz, CDCl₃) δ – 133.8 – -133.9 (m), -160.1 – -160.3 (m); IR (Neat Film, NaCl) 3351, 2882, 1557, 1531, 1451, 1350, 1326, 1080, 1039, 1008, 864, 848, 778, 747, 706 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₁F₃NO [M+H]⁺: 290.0787, found 290.0795.

(3-(naphthalen-2-yl)isoquinolin-1-yl)methanol (7j): Compound 7j was prepared from isoquinoline 6j using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (158 mg, 97% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 8.27 (dd, J = 8.6, 1.8 Hz, 1H), 8.16 (s, 1H), 8.05 – 7.93 (m, 4H), 7.91 – 7.89 (m, 1H), 7.75 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.62 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.58 – 7.47 (m, 2H), 5.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 148.5, 137.1, 136.2, 133.7, 133.7, 130.9, 128.8, 128.6, 128.0, 127.8, 127.6, 126.7, 126.6, 126.3, 124.6, 124.2, 123.3, 116.6, 61.6; IR (Neat Film, NaCl) 3393, 3056, 1622, 1573, 1506, 1445, 1410, 1375, 1344, 1314, 1086, 1008, 856, 817, 744 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₀H₁₆NO [M+H]⁺: 286.1231, found 286.1226.

(3-(3,5-dimethylphenyl)isoquinolin-1-yl)methanol (7k): Compound 7k was prepared from isoquinoline 6k using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (155 mg, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.94 – 7.91 (m, 2H), 7.78 – 7.76 (m, 2H), 7.72 (ddd, *J* = 8.3, 6.9, 1.2 Hz, 1H), 7.60 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.09 (s, 1H), 5.30 (s, 3H), 2.44 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 149.0, 138.9, 138.5, 137.1, 130.8, 130.6, 127.9, 127.4, 124.8, 124.1, 123.3, 116.3, 61.6, 21.7; IR (Neat Film, NaCl) 3382, 2913, 2338, 1622, 1574, 1503, 1444, 1379, 1332, 1084, 1011,

882, 849, 824, 750, 709 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₈H₁₈NO [M+H]⁺: 264.1382, found 264.1383.

(3-(3,4-dimethoxyphenyl)isoquinolin-1-yl)methanol (7l): Compound 7l was prepared from isoquinoline 6l using general procedure 4 and purified by column chromatography (40% EtOAc in hexanes) to provide a white solid (180 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.93 – 7.90 (m, 2H), 7.77 – 7.67 (m, 3H), 7.58 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.03 – 7.01 (m, 1H), 5.30 (s, 2H), 5.26 (br s, 1H, OH), 4.03 (s, 3H), 3.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 149.8, 149.3, 148.3, 137.0, 131.8, 130.7, 127.7, 127.1, 123.8, 123.2, 119.5, 115.3, 111.3, 110.0, 61.4, 56.1, 56.0; IR (Neat Film, NaCl) 3372, 2936, 2838, 1623, 1604, 1573, 1518, 1456, 1438, 1314, 1260, 1237, 1134, 1027, 1008 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₈H₁₈NO₃ [M+H]⁺: 296.1284, found 296.1283.

(3-(*o*-tolyl)isoquinolin-1-yl)methanol (7m): Compound 7m was prepared from isoquinoline 6m using general procedure 4 and purified by column chromatography (15% EtOAc in hexanes) to provide a white solid (130 mg, 79% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.91 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.75 (ddd, *J* = 8.3, 6.9, 1.2 Hz, 1H), 7.71 (s, 1H), 7.64 (ddd, *J* = 8.3, 6.8, 1.3 Hz, 1H), 7.53 (d, *J* = 6.6 Hz, 1H), 7.39 – 7.29 (m, 3H), 5.30 (s, 2H), 5.14 (s, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 151.4, 140.1, 136.7, 136.5, 131.0, 130.8, 130.2, 128.4, 127.8, 127.6, 126.1, 123.7, 123.3, 120.0, 61.6, 20.9; IR (Neat Film, NaCl) 3389, 3057, 2932, 1626, 1573, 1502, 1455, 1402, 1377, 1330, 1087, 1069, 1008, 884, 786, 757, 727 cm⁻¹; HRMS (MM:ESI-APCI+) *m*/*z* calc'd for C₁₇H₁₆NO [M+H]⁺: 250.1226, found 250.1232.

(3-(furan-2-yl)isoquinolin-1-yl)methanol (7n): Compound 7n was prepared from isoquinoline 6n using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (56 mg, 52% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.92 (m, 1H), 7.90 – 7.82 (m, 2H), 7.70 – 7.66 (m, 1H), 7.60 – 7.50 (m, 2H), 7.16 – 7.14 (m, 1H), 6.58 – 6.56 (m, 1H), 5.23 (s, 2H), 5.05 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 153.7, 143.1, 140.9, 136.6, 130.9, 127.8, 127.2, 124.0, 123.3, 113.6, 112.1, 108.6, 61.3; IR (Neat Film, NaCl) 3390, 3118, 2886, 1624, 1574, 1492, 1372, 1323, 1306, 1157, 1092, 1079, 1006, 884, 836, 743 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₄H₁₂NO₂ [M+H]⁺: 226.0863, found 226.0871.

(3-(thiophen-2-yl)isoquinolin-1-yl)methanol (70): Compound 70 was prepared from isoquinoline 60 (0.5 mmol) using general procedure 4 and purified by column chromatography (10% to 20% EtOAc in hexanes) to provide a white solid (46 mg, 38% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.88 – 7.83 (m, 2H), 7.75 – 7.65 (m, 2H), 7.55 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.41 (dd, J = 5.0, 1.2 Hz, 1H), 7.16 (dd, J = 5.0, 3.6 Hz, 1H), 5.25 (s, 2H), 5.02 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 144.4, 144.1, 136.8, 131.0, 128.2, 127.6, 127.2, 127.0, 124.1, 124.0, 123.3, 114.0, 61.3; IR (Neat Film, NaCl) 3382, 3066, 2868, 1621, 1589, 1573, 1501, 1452, 1402, 1329, 1084, 1006, 878, 822, 748, 701 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₄H₁₂NOS [M+H]⁺: 242.0634, found 242.0637.

(3-(thiophen-3-yl)isoquinolin-1-yl)methanol (7p): Compound 7p was prepared from isoquinoline 6p (0.58 mmol) using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (127 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (dd, J = 3.1, 1.3 Hz, 1H), 7.94 – 7.84 (m, 3H), 7.76 (dd, J = 5.1, 1.3 Hz, 1H), 7.71 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.58 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.45 (dd, J = 5.1, 3.0 Hz, 1H), 5.27 (s, 2H), 5.19 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 145.0, 141.7, 137.0, 130.9, 127.8, 127.3, 126.6, 126.0, 124.1, 123.4, 123.4, 115.6, 61.5; IR (Neat Film, NaCl) 3372, 3098, 2888, 2363, 1622, 1594, 1573, 1456, 1350, 1318, 1299, 1086, 1008, 880, 842, 793, 748, 697 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₄H₁₂NOS [M+H]⁺: 242.0634, found 242.0631.

(3-(1-methyl-1*H*-pyrazol-4-yl)isoquinolin-1-yl)methanol (7q): Compound 7q was prepared from isoquinoline 6q using general procedure 4 and purified by column chromatography (70% to 80% EtOAc in hexanes + 1% NEt₃) to provide a pale beige solid (72 mg, 62% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 7.95 (m, 2H), 7.85 – 7.79 (m, 2H), 7.71 – 7.59 (m, 2H), 7.53 – 7.49 (m, 1H), 5.21 (s, 2H), 3.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 143.2, 137.3, 136.9, 130.8, 128.8, 127.2, 126.7, 123.5, 123.2, 114.1 61.2, 39.2; IR (Neat Film, NaCl) 3370, 3068, 2937, 1626, 1603, 1573, 1503, 1416, 1321, 1278, 1186, 1092, 1011, 845, 753, 702 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₄H₁₄N₃O [M+H]⁺: 240.1131, found 240.1123.

(3-(pyridin-2-yl)isoquinolin-1-yl)methanol (7r): Compound 7r was prepared from isoquinoline **6r** using general procedure 4 and purified by column chromatography (10% to 20% acetone in CH₂Cl₂ + 1% NEt₃) to provide a pale cream solid (52 mg, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.74 – 8.72 (m, 2H), 8.52 (d, *J* = 8.2 Hz, 1H), 8.00 (d, *J* = 8.3 Hz, 1H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.86 (td, *J* = 7.8, 1.8 Hz, 1H), 7.78 – 7.69 (m, 1H), 7.63 (ddd, *J* = 8.1, 6.8, 1.2 Hz, 1H), 7.33 (ddd, *J* = 7.5, 4.8, 1.2 Hz, 1H), 5.31 (s, 2H), 5.13 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 155.8, 149.5, 147.3, 137.2, 137.0, 130.9, 128.7, 128.1, 125.1, 123.6, 123.3, 121.1, 117.6, 61.6; IR (Neat Film, NaCl) 3390, 3048, 2359, 1622, 1583, 1474, 1428, 1333, 1309, 1166, 1087, 1009, 897, 793, 747, 681 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₅H₁₃N₂O [M+H]⁺: 237.1022, found 237.1020.

(7-fluoro-3-phenylisoquinolin-1-yl)methanol (9a): Compound 9a was prepared from isoquinoline S1a using general procedure 4 and purified by column chromatography (10% EtOAc in hexanes) to provide a white solid (94 mg, 81% yield): ¹H NMR (400 MHz, CDCl₃) δ

8.13 (d, J = 8.0 Hz, 2H), 8.00 (s, 1H), 7.96 – 7.87 (m, 1H), 7.57 – 7.47 (m, 4H), 7.44 (td, J = 6.9, 6.4, 1.4 Hz, 1H), 5.21 (s, 2H), 5.11 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 161.0 (d, J = 250.3 Hz), 156.8 (d, J = 5.9 Hz), 148.4, 138.6, 134.1, 130.5 (d, J = 8.6 Hz), 129.0, 126.8, 124.7 (d, J = 8.5 Hz), 121.4 (d, J = 25.2 Hz), 115.9 (d, J = 2.0 Hz), 107.2 (d, J = 21.3 Hz), 61.6; ¹⁹F NMR (282 MHz, CDCl₃) δ –109.5 – –109.6 (m); IR (Neat Film, NaCl) 3393, 3063, 2878, 1594, 1579, 1506, 1417, 1392, 1321, 1232, 1185, 1085, 1015, 930, 777, 694 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₆H₁₃FNO [M+H]⁺: 254.0976, found 254.0968.

(7-fluoro-3-(4-methoxyphenyl)isoquinolin-1-yl)methanol (9b): Compound 9b was prepared from isoquinoline S1b using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (116 mg, 99% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.08 (m, 2H), 7.93 (s, 1H), 7.92 – 7.88 (m, 1H), 7.52 – 7.45 (m, 2H), 7.07 – 7.02 (m, 2H), 5.21 (s, 2H), 5.14 (s, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8 (d, *J* = 249.0 Hz), 160.5, 156.6 (d, *J* = 5.9 Hz), 148.3 (d, *J* = 2.9 Hz), 134.3, 131.3, 130.4 (d, *J* = 8.6 Hz), 128.1, 124.3 (d, *J* = 8.2 Hz), 121.4 (d, *J* = 25.3 Hz), 114.8 (d, *J* = 1.7 Hz), 114.4, 107.2 (d, *J* = 21.3 Hz), 61.6, 55.6; ¹⁹F NMR (282 MHz, CDCl₃) δ –110.2 (ddd, *J* = 8.9, 8.8, 5.5 Hz); IR (Neat Film, NaCl) 3388, 2936, 1608, 1593, 1516, 1389, 1289, 1251, 1180, 1069, 1032, 1015, 929, 835 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₅FNO₂ [M+H]⁺: 284.1081, found 284.1074.

(7-fluoro-3-(4-(trifluoromethyl)phenyl)isoquinolin-1-yl)methanol (9c): Compound 9c was prepared from isoquinoline S1c using general procedure 4 and purified by column chromatography (10% EtOAc in hexanes) to provide a white solid (80 mg, 60% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.1 Hz, 2H), 8.02 (s, 1H), 7.95 (dd, J = 9.8, 5.4 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.58 – 7.47 (m, 2H), 5.21 (s, 2H), 4.94 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 161.3 (d, J = 251.5 Hz), 157.3 (d, J = 5.9 Hz), 146.8 (d, J = 2.9 Hz), 141.8 (d, J = 1.5 Hz), 133.8, 130.7 (d, J = 8.7 Hz), 130.7 (q, J = 33.3 Hz), 127.0, 125.9 (q, J = 3.8 Hz), 125.2 (d, J = 8.4 Hz), 124.3 (q, J = 272.7 Hz), 121.7 (d, J = 25.3 Hz), 116.8 (d, J = 1.7 Hz), 107.4 (d, J = 21.5 Hz), 61.7; ¹⁹F NMR (282 MHz, CDCl₃) δ –62.5, –108.4 (ddd, J = 8.7, 8.7, 5.4 Hz); IR (Neat Film, NaCl) 3410, 2886, 1619, 1597, 1504, 1416, 1391, 1328, 1233, 1165, 1124, 1111, 1074,

1016, 931, 847, 680 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₇H₁₂F₄NO [M+H]⁺: 322.0850, found 322.0839.

(7-phenyl-[1,3]dioxolo[4,5-g]isoquinolin-5-yl)methanol (9d): Compound 9d was prepared from isoquinoline S1d using general procedure 4 and purified by column chromatography (30% to 40% EtOAc in hexanes) to provide a white solid (135 mg, 83% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.05 (m, 2H), 7.82 (s, 1H), 7.50 (m, 2H), 7.44 – 7.37 (m, 1H), 7.15 – 7.06 (m, 2H), 6.10 (s, 2H), 5.28 (br s, 1H, OH), 5.10 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 151.1, 148.6, 147.8, 138.9, 135.4, 128.8, 128.5, 126.6, 120.9, 115.9, 103.6, 101.9, 99.3, 61.4; IR (Neat Film, NaCl) 3324, 2914, 2355, 1597, 1497, 1463, 1436, 1422, 1236, 1066, 1036, 995, 940, 877, 775, 692 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₄NO₃ [M+H]⁺: 280.0968, found 280.0975.

(7-(3,4-dimethoxyphenyl)-[1,3]dioxolo[4,5-g]isoquinolin-5-yl)methanol (9e): Compound 9e was prepared from isoquinoline S1e using general procedure 4 and purified by column chromatography (40% EtOAc in hexanes) via dry-loading to provide a pale pink solid (126 mg, 65% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.69 – 7.60 (m, 2H), 7.16 – 7.07 (m, 2H), 6.99 (d, *J* = 8.2 Hz, 1H), 6.11 (s, 2H), 5.26 (br s, 1H, OH), 5.11 (s, 2H), 4.01 (s, 3H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 151.1, 149.7, 149.2, 148.4, 147.7, 135.5, 131.9, 120.6, 119.2, 115.1, 111.3, 109.7, 103.5, 101.8, 99.3, 61.4, 56.0, 56.0; IR (Neat Film, NaCl) 3378, 2912, 2353, 1595, 1519, 1496, 1463, 1456, 1435, 1258, 1234, 1034, 862, 730 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₉H₁₈NO₅ [M+H]⁺: 340.1179, found 340.1172.

(2-phenylbenzo[/]isoquinolin-4-yl)methanol (9f): Compound 9f was prepared from isoquinoline S1f using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) to provide a white solid (51 mg, 62% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.78 – 8.76 (m, 2H), 8.23 – 8.20 (m, 2H), 7.94 – 7.92 (m, 1H), 7.88 – 7.78 (m, 1H), 7.78 – 7.62 (m, 3H), 7.57 (t, *J* = 7.5 Hz, 2H), 7.48 (t, *J* = 7.3 Hz, 1H), 5.46 – 5.19 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.3, 150.4, 139.2, 135.9, 133.5, 129.0, 129.0, 129.0, 128.8, 128.6, 127.5, 127.1, 123.5, 122.1, 120.0, 120.0, 111.7, 61.7; IR (Neat Film, NaCl) 3322, 3064, 2890, 1589, 1494, 1428, 1386, 1304, 1242, 1081, 1050, 814, 747 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₀H₁₆NO [M+H]⁺: 286.1226, found 286.1235.

Syntheses of 1,3-Disubstituted Isoquinolines with Different Directing Groups

(3-phenylisoquinolin-1-yl)methyl acetate (11a): To a scintillation vial containing a stir bar and isoquinoline 7a (165 mg, 0.70 mmol) in THF (7 mL, 0.1 M) was added DMAP (8.6 mg, 0.07 mmol) and pyridine (0.14 mL, 1.75 mmol). Acetic anhydride (0.1 mL, 1.05 mmol) was then added dropwise. The reaction was stirred overnight at room temperature then diluted with Et₂O and washed with saturated aqueous NH₄Cl. The organic phase was collected, dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (10% EtOAc in hexanes) to afford 11a as a colorless viscous oil (194 mg, >99% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.19 – 8.13 (m, 2H), 8.11 (dd, *J* = 8.4, 1.0 Hz, 1H), 8.07 (s, 1H), 7.92 (dt, *J* = 8.3, 0.9 Hz, 1H), 7.71 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 7.61 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.45 – 7.38 (m, 1H), 5.79 (s, 2H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 154.4, 150.2, 139.3, 137.5, 130.5, 128.9, 128.7, 128.0, 127.6, 127.1, 126.0, 124.8, 117.2, 66.1, 21.1; IR (Neat Film, NaCl) 2826, 2364, 1704, 1574, 1455, 1333, 1054, 904, 783, 764, 748, 719, 678 cm⁻¹; HRMS (MM:ESI-APCI+) *m*/*z* calc'd for C₁₈H₁₆NO₂ [M+H]⁺: 278.1176, found 278.1178.

1-(methoxymethyl)-3-phenylisoquinoline (11b): To a scintillation vial containing a stir bar and isoquinoline **7a** (165 mg, 0.70 mmol) in THF (7 mL, 0.1 M) was added KO*t*-Bu (86 mg, 0.77

mmol) at room temperature. The resulting mixture was stirred for 5 minutes, then cooled to 0 °C, and MeI (0.05 mL, 0.77 mmol) was added. The reaction was allowed to slowly warm to room temperature overnight and then was quenched with saturated aqueous NH₄Cl. The organic phase was collected and the aqueous phase was extracted with EtOAc. The organic phases were combined, dried over MgSO₄, and concentrated in vacuo. The crude product was purified by column chromatography (5% EtOAc in hexanes) to afford **11b** as a white solid (79 mg, 45% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, *J* = 8.4, 1.1 Hz, 1H), 8.20 – 8.13 (m, 2H), 8.04 (s, 1H), 7.89 (d, *J* = 8.3 Hz, 1H), 7.69 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 7.60 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.51 (td, *J* = 7.3, 6.5, 1.2 Hz, 2H), 7.45 – 7.37 (m, 1H), 5.14 (s, 2H), 3.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 149.9, 139.7, 137.5, 130.4, 128.9, 128.6, 127.7, 127.3, 127.1, 126.5, 125.9, 117.1, 75.8, 58.7; IR (Neat Film, NaCl) 3058, 2918, 2817, 1622, 1590, 1500, 1455, 1338, 1188, 1104, 885, 770, 752, 695, 668 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₆NO [M+H]⁺: 250.1226, found 250.1236.

1-((benzyloxy)methyl)-3-phenylisoquinoline (11c): This procedure has been adapted from a previous report.⁶ To a flame-dried RBF equipped with a stir bar was added NaH (36.4 mg, 60% w/w in oil, 0.91 mmol) and THF (7 mL, 0.1 M). To this suspension, isoquinoline **7a** (165 mg, 0.70 mmol) was added. After 5 minutes of stirring at room temperature, the reaction mixture was cooled to 0 °C and BnBr (0.91 mL, 0.91 mmol) was added. The reaction was allowed to slowly warm to room temperature overnight. Silica (1 g) was then added and the solvent was evaporated under vacuum. The crude product was purified by column chromatography (5% EtOAc in hexanes) to afford **11c** as a colorless viscous oil (153 mg, 67% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 8.4, 1.1 Hz, 1H), 8.21 – 8.14 (m, 2H), 8.04 (s, 1H), 7.89 (d, J = 8.4, 1H), 7.69 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.58 (ddd, J = 8.3, 6.8, 1.2 Hz, 1H), 7.51 (dd, J = 8.4, 6.9 Hz, 2H), 7.45 – 7.27 (m, 6H), 5.24 (s, 2H), 4.67 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 149.9, 139.7, 138.2, 137.6, 130.4, 128.9, 128.6, 128.5, 128.3, 127.9, 127.7, 127.3, 127.1, 126.6, 126.1, 117.1, 73.6, 72.8; IR (Neat Film, NaCl) 3062, 2858, 1622, 1574, 1496, 1454, 1384, 1337, 1207, 1094, 1030, 885, 796, 768, 737, 696 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₃H₂₀NO [M+H]⁺: 326.1539, found 326.1544.

tert-butyl ((3-phenylisoquinolin-1-yl)methyl)carbamate (11d): This procedure has been adapted from a previous report.⁷ To a solution of aldehyde 11f (150 mg, 0.64 mmol) and *t*-butyl carbamate (150 mg, 1.28 mmol) in MeCN (6.5 mL, 0.1 M) were added trifluoroacetic acid (0.15 mL, 1.92 mmol) and triethylsilane (1.0 mL, 6.4 mmol). The reaction was stirred at room temperature overnight and then quenched with saturated aqueous Na₂CO₃ and extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography (15% EtOAc in hexanes) to afford 11d as a white solid (160 mg, 75% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 7.7 Hz, 2H), 8.10 (d, *J* = 8.4 Hz, 1H), 8.00 (s, 1H), 7.90 (d, *J* = 8.2 Hz, 1H), 7.70 (ddd, *J* = 8.1, 6.9, 1.1 Hz, 1H), 7.61 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.48 – 7.40 (m, 1H), 6.43 (br s, 1H), 5.03 (d, *J* = 4.4 Hz, 2H), 1.54 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 156.3, 155.0, 149.3, 139.4, 137.1, 130.6, 128.9, 128.8, 127.9, 127.6, 127.0, 125.1, 124.0, 116.3, 79.6, 43.5, 28.7; IR (Neat Film, NaCl) 3418, 2976, 1713, 1622, 1574, 1487, 1367, 1251, 1167, 1056, 882, 765, 695 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₁H₂₃N₂O₂ [M+H]⁺: 335.1754, found 335.1760.

3-phenylisoquinoline-1-carbaldehyde (11f): To a Schlenk flask containing a stir bar was added SeO₂ (140 mg, 1.26 mmol) and isoquinoline **6a** (138 mg, 0.63 mmol) in 1,4-dioxane (13 mL, 0.05 M). The reaction vial was then sealed and heated to 110 °C while stirring for 2 hours. The reaction was then cooled to room temperature and filtered through celite rinsing with EtOAc. The crude product was then purified by column chromatography (5% EtOAc in hexanes) to afford **11f** as a pale yellow solid (1.32 g, 96% yield): ¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 9.32 (d, *J* = 8.2 Hz, 1H), 8.31 (s, 1H), 8.24 (d, *J* = 8.1 Hz, 2H), 7.97 (d, *J* = 7.3 Hz, 1H), 7.84 – 7.67 (m, 2H), 7.56 (t, *J* = 7.5 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 150.8, 149.7, 138.5, 138.1, 131.0, 129.9, 129.3, 129.1, 127.5, 127.1, 125.9, 125.5, 121.3; IR (Neat Film, NaCl) 2826, 2364, 1704, 1574, 1455, 1333, 1054, 904, 783, 764, 748, 719, 678 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₂NO [M+H]⁺: 234.0913, found 234.0914.

General Procedure 5: Hydrogenation Reactions

To an oven-dried 20-mL scintillation vial equipped with a stir bar and isoquinoline (0.2 mmol) was capped with a PTFE-lined septum and pierced with two 21 gauge green needles. The vials were then placed in a Parr bomb and brought into the glovebox, with the exception of the pressure gauge. A layer of plastic wrap and a rubber band were also brought in to seal the top of the bomb. In a nitrogen-filled glovebox, a solution of the ligand (SL-J418-1) (4.53 mg, 0.006 mmol per reaction) and [Ir(cod)Cl]₂ (1.68 mg, 0.0025 mmol per reaction) in THF (1.8 mL per reaction) was prepared and allowed to stand for 10 minutes. Meanwhile, a solution of TBAI (5.54 mg, 0.015 mmol per reaction) in AcOH (0.2 mL per reaction) was prepared in a 1-dram vial, and 0.2 mL of the solution was added to each reaction vial via a syringe. Afterwards, 1.8 mL of the homogeneous iridium catalyst solution was added to each reaction vial via a syringe. After re-capping the vials with caps equipped with needles, the reactions were placed in the bomb and the top was covered tightly with plastic wrap secured by a rubber band. The bomb was then removed from the glovebox, and the pressure gauge was quickly screwed in place and tightened. The bomb was charged to 5-10 bar H₂ and slowly released. This process was repeated two more times, before charging the bomb to 20 bar of H₂ (or 60 bar H₂). The bomb was then left stirring at 200 rpm at room temperature (or placed in an oil bath and heated to 60 °C) for 18 hours. Then, the bomb was removed from the stir plate and the hydrogen pressure was vented. The reaction vials were removed from the bomb and each solution was basified by the addition of saturated aqueous K₂CO₃. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organics layers were then dried over Na₂SO₄, and concentrated in vacuo. The product was then purified by column chromatography to furnish the product as an inseparable mixture of diastereomers.

<u>Please note</u> that the NMR data listed is for the major diastereomer, and that the provided spectra for the following compounds reflect the inseparable mixture of *cis*- and *trans*-products. The enantiomeric excess was determined by chiral SFC analysis of the Cbz-protected amine (see Table S3). The absolute configuration was determined for compound **8p** via x-ray crystallographic analysis. Absolute configuration of compound **12e** were determined using vibrational circular dichroism (VCD), *vide infra*. The absolute configuration for all other products has been inferred by analogy.

((1*S*,3*R*)-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8a): Compound 8a was prepared from isoquinoline 7a using general procedure 5 and purified by column chromatography (5% MeOH in CH₂Cl₂) to provide a tan solid as a mixture of diastereomers (47 mg, 98% yield) (dr = 15.7:1); 92% ee for major diastereomer; $[\alpha]_D^{25}$ +110.2 (*c* 1.02, CHCl₃); *Cis*-diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 2H), 7.41 – 7.34 (m, 2H), 7.34 – 7.28 (m, 1H), 7.25 – 7.17 (m, 3H), 7.15 – 7.10 (m, 1H), 4.43 – 4.41 (m, 1H), 4.10 (dd, *J* = 11.1, 3.5 Hz, 1H), 4.02 (dd, *J* = 10.8, 3.3 Hz, 1H), 3.90 (dd, *J* = 10.9, 5.4 Hz, 1H), 3.02 (ddt, *J* = 15.9, 11.1, 1.4 Hz, 1H), 2.90 (dd, *J* = 15.7, 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 136.7, 134.9, 129.3, 128.8, 127.7, 126.8, 126.7, 126.5, 125.5, 66.7, 58.7, 57.7, 39.0; IR (Neat Film, NaCl) 3296, 3060, 2910, 2360, 1494, 1455, 1314, 1116, 1036, 909, 742, 700 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₈NO [M+H]⁺: 240.1383, found 240.1385; SFC Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 2.34, minor = 4.02.

Trans-diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.42 – 7.38 (m, 2H), 7.36 – 7.27 (m, 1H), 7.26 – 7.10 (m, 4H), 4.23 (dd, *J* = 10.5, 4.8 Hz, 1H), 4.16 (dd, *J* = 11.2, 3.9 Hz, 1H), 3.80 (dd, *J* = 10.8, 4.8 Hz, 1H), 3.71 (t, *J* = 10.7 Hz, 1H), 3.07 (dd, *J* = 16.4, 3.9 Hz, 1H), 2.95 (dd, *J* = 15.9, 11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 135.5, 134.7, 129.5, 128.8, 127.5, 127.0, 126.7, 126.6, 126.4, 63.8, 57.4, 50.7, 36.8.

((1S,3R)-3-(4-(tert-butyl)phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8b):

Compound **8b** was prepared from isoquinoline **7b** using general procedure 5 and purified by column chromatography (50% EtOAc in hexanes) to provide a tan solid as a mixture of diastereomers (51 mg, 87% yield) (dr = 13.3:1); 91% ee for major diastereomer; $[\alpha]_D^{25}$ +78.8 (*c* 1.03, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.38 (m, 4H), 7.26 – 7.21 (m, 2H), 7.21 – 7.17 (m, 1H), 7.12 (d, *J* = 7.7 Hz, 1H), 4.42 – 4.40 (m, 1H), 4.08 (dd, *J* = 11.2, 3.4 Hz, 1H), 4.01 (dd, *J* = 10.8, 3.3 Hz, 1H), 3.89 (dd, *J* = 10.8, 5.4 Hz, 1H), 3.03 (dd, *J* = 15.8, 11.2 Hz, 1H), 2.89 (dd, *J* = 15.7, 3.4 Hz, 1H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ

150.7, 141.2, 136.7, 135.0, 129.3, 126.7, 126.5, 126.5, 125.7, 125.5, 66.6, 58.7, 57.3, 38.8, 34.7, 31.5; IR (Neat Film, NaCl) 3318, 2961, 2868, 1494, 1454, 1362, 1312, 1270, 1116, 1038, 820, 743 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₀H₂₆NO [M+H]⁺: 296.2009, found 296.2005; SFC Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 1.81, minor = 2.73.

((1*S*,3*R*)-3-([1,1'-biphenyl]-4-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8c):

Compound **8c** was prepared from isoquinoline **7c** using general procedure 5 and purified by column chromatography (50% EtOAc in hexanes) to provide a tan solid as a mixture of diastereomers (50 mg, 79% yield) (dr = 9.0:1); 92% ee for major diastereomer; $[\alpha]_D^{25}$ +73.2 (*c* 1.03, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.58 (m, 4H), 7.55 – 7.53 (m, 2H), 7.47 – 7.44 (m, 2H), 7.39 – 7.32 (m, 1H), 7.28 – 7.16 (m, 3H), 7.15 (d, *J* = 6.2 Hz, 1H), 4.46 – 4.44 (m, 1H), 4.15 (dd, *J* = 11.2, 3.4 Hz, 1H), 4.04 (dd, *J* = 10.9, 3.3 Hz, 1H), 3.91 (dd, *J* = 10.9, 5.5 Hz, 1H), 3.12 – 3.00 (m, 1H), 2.94 (dd, *J* = 15.6, 3.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 141.0, 140.7, 136.5, 134.9, 129.3, 128.9, 127.5, 127.4, 127.3, 127.2, 126.8, 126.6, 125.5, 66.6, 58.7, 57.4, 38.9; IR (Neat Film, NaCl) 3318, 3029, 2924, 2365, 1487, 1455, 1312, 1218, 1112, 1038, 833, 763, 748, 699 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₂H₂₂NO [M+H]⁺: 316.1696, found 316.1686; SFC Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 4.08, minor = 5.18.

((1*S*,3*R*)-3-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8d): Compound 8d was prepared from isoquinoline 7d using general procedure 5 and purified by column chromatography (50% to 60% EtOAc in hexanes + 1% NEt₃) to provide a pale yellow solid as a mixture of diastereomers (40 mg, 75% yield) (dr = 13.3:1); 92% ee for major diastereomer; $[\alpha]_D^{25}$ +69.3 (*c* 1.01, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.36 (m, 2H), 7.24 – 7.15 (m, 3H), 7.12 (d, *J* = 7.6 Hz, 1H), 6.94 – 6.90 (m, 2H), 4.41 – 4.39 (m, 1H), 4.07 – 3.97 (m, 2H), 3.86 (dd, *J* = 10.9, 5.9 Hz, 1H), 3.83 (s, 3H), 3.06 – 2.95 (m, 1H), 2.86 (dd, *J* = 15.7, 3.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 136.6, 136.3, 134.8, 129.2, 127.8,

126.6, 126.3, 125.3, 114.0, 66.5, 58.6, 57.0, 55.4, 38.8; IR (Neat Film, NaCl) 3342, 2929, 2835, 1612, 1514, 1494, 1453, 1302, 1250, 1176, 1108, 1036, 824, 801, 743 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₂₀NO₂ [M+H]⁺: 270.1489, found 270.1486; SFC Conditions: 45% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 2.59, minor = 3.61.

((1*S*,*3R*)-3-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8e): Compound 8e was prepared from isoquinoline 7e using general procedure 5 and purified by column chromatography (40% EtOAc in hexanes + 1% NEt₃) to provide a pale yellow solid as a mixture of diastereomers (51 mg, 99% yield) (dr = 10.1:1); 93% ee for major diastereomer; $[\alpha]_D^{25}$ +79.2 (*c* 1.00, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.41 (m, 2H), 7.24 – 7.18 (m, 3H), 7.12 (d, *J* = 6.9 Hz, 1H), 7.08 – 7.04 (m, 2H), 4.42 – 4.40 (m, 1H), 4.08 (dd, *J* = 11.0, 3.5 Hz, 1H), 4.02 (dd, *J* = 10.8, 3.3 Hz, 1H), 3.88 (dd, *J* = 10.9, 5.5 Hz, 1H), 3.03 – 2.91 (m, 1H), 2.87 (dd, *J* = 15.7, 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, *J* = 245.5 Hz), 140.0 (d, *J* = 3.0 Hz), 136.4, 134.8, 129.3, 128.4 (d, *J* = 7.9 Hz), 126.6 (d, *J* = 19.9 Hz), 125.5, 115.5 (d, *J* = 21.2 Hz), 66.7, 58.6, 57.1, 39.1; ¹⁹F NMR (282 MHz, CDCl₃) δ -115.0 – -115.1 (m); IR (Neat Film, NaCl) 3310, 3069, 2924, 2828, 1605, 1511, 1494, 1454, 1225, 1158, 1063, 1040, 844, 826, 744 cm⁻¹; HRMS (MM:ESI-APCI+) *m*/*z* calc'd for C₁₆H₁₇FNO [M+H]⁺: 258.1289, found 258.1286; SFC Conditions: 45% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 1.93, minor = 2.87.

((1*S*,3*R*)-3-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8f): Compound 8f was prepared from isoquinoline 7f using general procedure 5 and purified by column chromatography (30% EtOAc in hexanes + 1% NEt₃) to provide a yellow solid as a mixture of diastereomers (49 mg, 80% yield) (dr = 4.6:1); 92% ee for major diastereomer; $[\alpha]_D^{25}$ +35.5 (*c* 1.01, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.55 (m, 2H, integration overlapped with minor diastereomer), 7.51 (d, *J* = 8.3 Hz, 2H), 7.18 – 7.10 (m, 3H), 7.10 – 7.03 (m, 1H), 4.36 – 4.34 (m, 1H), 4.08 (dd, *J* = 10.6, 4.0 Hz, 1H), 3.97 (dd, *J* = 10.8, 3.3 Hz, 1H), 3.81 (dd, *J* = 10.9, 5.8 Hz, 1H), 2.95 – 2.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 135.9, 134.6, 129.1, 127.1, 127.0, 126.9, 126.7, 126.7, 126.6, 126.5, 125.7 – 125.5 (m), 125.4, 66.6, 58.4, 57.3, 38.8; ¹⁹F NMR (282 MHz, CDCl₃) δ –115.1 (qd, J = 8.7, 5.6 Hz); IR (Neat Film, NaCl) 3304, 2917, 1621, 1418, 1325, 1166, 1123, 1068, 1018, 844, 745 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₇H₁₇F₃NO [M+H]⁺: 308.1257, found 308.1265; SFC Conditions: 25% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 3.11 minor = 5.54.

4-((1*S*,3*R*)-1-(hydroxymethyl)-1,2,3,4-tetrahydroisoquinolin-3-yl)benzonitrile (8g):

Compound **8g** was prepared from isoquinoline **7g** using general procedure 5 and purified by column chromatography (30% EtOAc in CH₂Cl₂ + 1% NEt₃) to provide a pale tan solid as a mixture of diastereomers (44 mg, 83% yield) (dr = 2.4:1); 82% ee for major diastereomer; $[\alpha]_D^{25}$ +57.4 (*c* 1.00, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.66 (m, 2H), 7.60 – 7.57 (m, 2H), 7.26 – 7.17 (m, 3H, integration overlapped with minor diastereomer), 7.16 – 7.12 (m, 1H), 4.43 – 4.41 (m, 1H), 4.16 (dd, *J* = 10.0, 4.6 Hz, 1H), 4.06 (dd, *J* = 10.9, 3.3 Hz, 1H), 3.89 (dd, *J* = 10.9, 5.8 Hz, 1H), 2.99 – 2.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 135.7, 134.5, 132.6, 129.2, 127.6, 126.9, 126.8, 125.5, 118.9, 111.5, 66.7, 58.5, 57.4, 38.8; IR (Neat Film, NaCl) 3314, 3060, 2925, 2227, 1608, 1494, 1454, 1311, 1115, 1040, 910, 846, 826, 780, 740 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₇N₂O [M+H]⁺: 265.1335, found 265.1336; SFC Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 2.03, minor = 3.33.

((1*S*,3*R*)-3-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8h): Compound 8h was prepared from isoquinoline 7h using general procedure 5 and purified by column chromatography (0% to 2% MeOH in CH₂Cl₂) to provide a pale yellow solid as a mixture of diastereomers (44 mg, 78% yield) (dr = 3.2:1); 86% ee for major diastereomer; $[\alpha]_D^{25}$ +54.4 (*c* 1.02, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.15 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.62 - 7.47 (m, 1H), 7.25 - 7.07 (m, 4H, integration overlapped with minor diastereomer), 4.43 - 4.41 (m, 1H), 4.20 (dd, *J* = 9.2, 5.4 Hz, 1H), 4.07

(dd, J = 10.9, 3.2 Hz, 1H), 3.91 – 3.83 (m, 1H), 3.15 – 3.02 (m, 1H), 2.98 – 2.91 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 146.5, 135.7, 134.6, 133.2, 129.8, 129.4, 127.0, 126.9, 125.6, 122.9, 122.0, 66.8, 58.7, 57.2, 38.9; IR (Neat Film, NaCl) 3388, 2924, 1635, 1531, 1495, 1454, 1350, 1220, 1117, 1038, 802, 781, 748, 738, 682 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₇N₂O₃ [M+H]⁺: 285.1234, found 285.1234; SFC Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 2.45, minor = 3.23.

((1*S*,3*R*)-3-(3,4,5-trifluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8i):

Compound **8i** was prepared from isoquinoline **7i** using general procedure 5 and purified by column chromatography (5% to 10% EtOAc in CH₂Cl₂ + 1% NEt₃) to provide a pale yellow solid as a mixture of diastereomers (55 mg, 94% yield) (dr = 3.5:1); 89% ee for major diastereomer; [α]_D²⁵ +61.6 (*c* 1.02, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.18 (m, 2H, integration overlapped with minor diastereomer), 7.16 – 7.08 (m, 4H), 4.40 – 4.38 (m, 1H), 4.09 – 4.00 (m, 2H), 3.87 (dd, *J* = 10.9, 5.9 Hz, 1H), 2.88 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 151.4 (ddd, *J* = 250.1, 9.8, 3.6 Hz), 139.0 (dt, *J* = 250.9, 15.6 Hz), 135.5, 134.4, 129.2, 127.0, 126.8, 125.5, 110.9 – 110.6 (m), 66.7, 58.5, 56.2, 38.8; ¹⁹F NMR (282 MHz, CDCl₃) δ –133.6 – –134.4 (m), –161.8 – –162.0 (m); IR (Neat Film, NaCl) 3307, 2928, 1621, 1532, 1454, 1372, 1340, 1235, 1043, 866, 804, 748, 698 cm⁻¹; HRMS (MM:ESI-APCI+) *m*/*z* calc'd for C₁₆H₁₅F₃NO [M+H]⁺: 294.1100, found 294.1095; SFC Conditions: 40% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 1.67, minor = 2.20.

((1*S*,3*R*)-3-(naphthalen-2-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8j): Compound 8j was prepared from isoquinoline 7j using general procedure 5 and purified by column chromatography (30% EtOAc in hexanes + 1% NEt₃) to provide a pale yellow solid as a single diastereomer (49 mg, 80% yield); 95% ee; $[\alpha]_D^{25}$ +90.7 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.88 – 7.84 (m, 3H), 7.60 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.53 – 7.45 (m, 2H), 7.28 – 7.20 (m, 3H), 7.15 (d, *J* = 6.8 Hz, 1H), 4.48 – 4.46 (m, 1H), 4.27 (dd, *J* = 11.1, 3.5 Hz,
1H), 4.06 (dd, J = 10.9, 3.3 Hz, 1H), 3.94 (dd, J = 10.8, 5.4 Hz, 1H), 3.14 – 3.07 (m, 1H), 2.98 (dd, J = 15.7, 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 136.7, 135.1, 133.7, 133.2, 129.4, 128.6, 128.1, 127.9, 126.9, 126.7, 126.4, 126.1, 125.6, 125.3, 66.8, 58.8, 57.9, 39.1; IR (Neat Film, NaCl) 3056, 2917, 2356, 1602, 1494, 1454, 1425, 1366, 1314, 1276, 1112, 1047, 862, 820, 743 cm⁻¹; HRMS (MM:ESI-APCI+) *m*/*z* calc'd for C₂₀H₂₀NO [M+H]⁺: 290.1539, found 290.1540; SFC Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 3.61, minor = 5.81.

((1*S*,3*R*)-3-(3,5-dimethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8k):

Compound **8k** was prepared from isoquinoline **7k** using general procedure 5 and purified by column chromatography (30% EtOAc in hexanes + 1% NEt₃) to provide a pale yellow solid as a single diastereomer (49 mg, 80% yield); 92% ee; $[\alpha]_D^{25}$ +93.5 (*c* 0.98, CHCl₃): ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.16 (m, 3H), 7.12 (d, *J* = 6.5 Hz, 1H), 7.07 (s, 2H), 6.95 (s, 1H), 4.41 – 4.39 (m, 1H), 4.02 (dd, *J* = 10.9, 3.3 Hz, 2H), 3.90 (dd, *J* = 10.8, 5.4 Hz, 1H), 3.04 – 3.00 (m, 1H), 2.88 (dd, *J* = 15.8, 3.4 Hz, 1H), 2.34 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 138.3, 136.8, 135.0, 129.3, 126.7, 126.4, 125.4, 124.6, 66.6, 58.7, 57.6, 38.9, 21.5; IR (Neat Film, NaCl) 3318, 3014, 2916, 1607, 1494, 1454, 1313, 1117, 1038, 854, 782, 746, 725 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₈H₂₂NO [M+H]⁺: 268.1696, found 268.1702; SFC Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 1.95, minor = 3.02.

((1*S*,3*R*)-3-(3,4-dimethoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8l):

Compound **81** was prepared from isoquinoline **71** using general procedure 5 and purified by column chromatography (1% MeOH in CH₂Cl₂ + 1% NEt₃) to provide a pale yellow solid as a single diastereomer (49 mg, 80% yield); 88% ee; $[\alpha]_D^{25}$ +62.4 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.22 - 7.16 (m, 3H), 7.12 (d, *J* = 6.7 Hz, 1H), 7.04 - 6.94 (m, 2H), 6.87 - 6.84 (m, 1H), 4.38 - 4.36 (m, 1H), 4.01 (dt, *J* = 11.2, 4.0 Hz, 2H), 3.90 (s, 3H), 3.88 (s, 3H), 3.84 (dd,

J = 11.0, 6.0 Hz, 1H), 3.08 - 3.00 (m, 1H), 2.87 (dd, J = 15.8, 3.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 148.5, 136.5, 136.4, 134.6, 129.3, 126.7, 126.4, 125.3, 119.0, 111.2, 110.0, 66.3, 58.8, 57.6, 56.1, 38.7; IR (Neat Film, NaCl) 3332, 2934, 2832, 1593, 1518, 1494, 1454, 1264, 1238, 1141, 1028, 745, 720 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₈H₂₂NO₃ [M+H]⁺: 300.1594, found 300.1600; SFC Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 2.28, minor = 2.93.

((1*S*,3*R*)-3-(*o*-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8m): Compound 8m was prepared from isoquinoline 7m using general procedure 5 and purified by column chromatography (30% EtOAc in hexanes + 1% NEt₃) to provide a pale beige solid as a mixture of diastereomers (49 mg, 80% yield) (dr = 10.1:1); 49% ee from major diastereomer; $[\alpha]_D^{25}$ +53.7 (*c* 1.01, CHCl₃): ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.1 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.26 – 7.17 (m, 5H), 7.14 (d, *J* = 7.3 Hz, 1H), 4.44 – 4.42 (m, 1H), 4.32 (dd, *J* = 10.9, 3.5 Hz, 1H), 4.04 (dd, *J* = 10.8, 3.2 Hz, 1H), 3.92 (dd, *J* = 10.8, 5.3 Hz, 1H), 3.03 – 2.92 (m, 1H), 2.88 (dd, *J* = 15.8, 3.5 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 136.9, 135.2, 135.0, 130.6, 129.4, 127.3, 126.7, 126.5, 125.6, 125.5, 66.6, 58.9, 53.4, 37.7, 19.5; IR (Neat Film, NaCl) 3318, 3022, 2925, 2354, 1492, 1454, 1316, 1117, 1037, 864, 751, 743, 727 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₂₀NO [M+H]⁺: 254.1539, found 254.1539; SFC Conditions: 30% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 5.91, minor = 6.39.

((1*S*,3*R*)-3-(furan-2-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8n): Compound 8n was prepared from isoquinoline 7n using general procedure 5 and purified by column chromatography (40% EtOAc in hexanes + 1% NEt₃) to provide a pale yellow solid as a mixture of diastereomers (34 mg, 74% yield) (dr = 3.3:1); 92% ee for major diastereomer; $[\alpha]_D^{25}$ +35.5 (*c* 1.00, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.39 (m, 1H), 7.24 – 7.14 (m, 4H, integration overlapped with minor diastereomer), 6.37 (dd, *J* = 3.3, 1.9 Hz, 1H), 6.28 (d, *J* = 3.2 Hz, 1H), 4.37 – 4.35 (m, 1H), 4.20 (dd, *J* = 11.0, 3.7 Hz, 1H), 4.03 (dd, *J* = 11.0, 3.3 Hz, 1H), 3.86 – 3.75 (m, 1H), 3.18 – 3.05 (m, 1H), 3.05 – 2.95 (m, 1H); ¹³C NMR (100 MHz,

CDCl₃) δ 141.8, 135.5, 134.7, 129.4, 126.9, 126.7, 126.5, 125.3, 110.2, 105.3, 66.2, 57.9, 50.7, 34.5; IR (Neat Film, NaCl) 3304, 2920, 1495, 1454, 1316, 1146, 1114, 1062, 1037, 1009, 883, 740 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₄H₁₆NO₂ [M+H]⁺: 230.1176, found 230.1181; SFC Conditions: 35% IPA, 2.5 mL/min, Chiralpak OJ-H column, λ = 210 nm, t_R (min): major = 1.52, minor = 1.82.

((1*S*,3*R*)-3-(thiophen-2-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (80): Compound 80 was prepared from isoquinoline 70 using general procedure 5 and purified by column chromatography (40% EtOAc in hexanes + 1% NEt₃) to provide a pale beige solid as a mixture of diastereomers (46 mg, 94% yield) (dr = 3.6:1); 90% ee for major diastereomer; $[\alpha]_D^{25}$ +57.4 (*c* 1.04, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 1H), 7.28 – 7.21 (m, 3H, integration overlapped with minor diastereomer), 7.19 – 7.15 (m, 1H), 7.11 – 7.09 (m, 1H), 7.07 – 7.04 (m, 1H), 4.47 – 4.42 (m, 2H), 4.06 (dd, *J* = 10.9, 3.4 Hz, 1H), 3.87 (dd, *J* = 11.0, 5.9 Hz, 1H), 3.19 – 2.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 135.8, 134.7, 129.1, 126.7, 126.6, 125.3, 124.2, 123.5, 66.4, 58.5, 53.1, 39.3; IR (Neat Film, NaCl) 3312, 2923, 2360, 1494, 1454, 1424, 1310, 1280, 1112, 1038, 850, 830, 744, 704 cm⁻¹; HRMS (MM:ESI-APCI+) *m*/*z* calc'd for C₁₄H₁₆NOS [M+H]⁺: 246.0947, found 246.0941; SFC Conditions: 35% IPA, 2.5 mL/min, Chiralpak OJ-H column, λ = 210 nm, t_R (min): major = 2.86, minor = 6.02.

((1*S*,3*R*)-3-(thiophen-3-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8p): Compound 8p was prepared from isoquinoline 7p using general procedure 5 and purified by column chromatography (30% EtOAc in hexanes + 1% NEt₃) to provide a pale beige solid as a mixture of diastereomers (25.5 mg, 52% yield) (dr = 7.3:1). The isolated product contained long-chain hydrocarbon impurities, so it was repurified by partitioning between acetonitrile and hexanes. The acetonitrile layer was collected and concentrated to afford 8p as a pale yellow solid (24.0 mg, 49% yield); 89% ee for major diastereomer; $[\alpha]_D^{25}$ +86.8 (*c* 0.99, CHCl₃): ¹H NMR (400 MHz, CDCl₃) δ 7.24 (dd, *J* = 4.9, 3.0 Hz, 1H), 7.18 – 7.16 (m, 1H), 7.13 – 7.07 (m, 4H), 7.05 – 7.02 (m, 1H), 4.28 – 4.26 (m, 1H), 4.10 (dd, *J* = 10.8, 3.8 Hz, 1H), 3.93 (dd, *J* = 10.9, 3.4 Hz, 1H), 3.73 (dd, *J* = 11.0, 6.1 Hz, 1H), 2.99 – 2.90 (m, 1H), 2.86 (dd, *J* = 15.8, 3.8 Hz, 1H); ¹³C

NMR (100 MHz, CDCl₃) δ 145.3, 136.2, 134.9, 129.3, 126.7, 126.5, 126.5, 126.2, 125.3, 120.9, 66.3, 58.5, 53.3, 38.1; IR (Neat Film, NaCl) 3318, 2924, 2366, 1494, 1454, 1424, 1313, 1279, 1218, 1116, 1038, 854, 782, 748 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₄H₁₆NOS [M+H]⁺: 246.0947, found 246.0952; SFC Conditions: 35% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 3.19, minor = 4.05.

((1*S*,3*R*)-3-(1-methyl-1*H*-pyrazol-4-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8q): Compound 8q was prepared from isoquinoline 7q using general procedure 5 and purified by column chromatography (5% to 10% MeOH in EtOAc + 1% NEt₃) to provide a pale yellow solid as a mixture of diastereomers (48 mg, 98% yield) (dr = 2.9:1); 87% ee for major diastereomer; $[\alpha]_D^{25}$ +37.1 (*c* 1.021, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.61 (m, 2H), 7.26 – 7.16 (m, 2H, integration overlapped with minor diastereomer), 7.19 – 7.06 (m, 2H), 4.50 – 4.98 (m, 1H), 4.20 (dd, *J* = 11.8, 3.3 Hz, 1H), 4.02 (dd, *J* = 11.6, 3.3 Hz, 1H), 3.84 (s, 3H), 3.34 – 3.22 (m, 1H), 3.13 – 2.89 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 134.7, 132.2, 129.3, 129.2, 127.2, 126.9, 125.4, 121.5, 64.6, 58.6, 49.1, 39.0, 36.1; IR (Neat Film, NaCl) 3315, 2931, 2371, 1560, 1494, 1455, 1408, 1295, 1169, 1031, 1008, 986, 748, 724 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₄H₁₈N₃O [M+H]⁺: 244.1444, found 244.1448; SFC Conditions: 25% IPA, 2.5 mL/min, Chiralpak OJ-H column, λ = 210 nm, t_R (min): minor = 1.84, major = 2.60.

((1*S*,3*R*)-3-(pyridin-2-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (8r): Compound 8r was prepared from isoquinoline 7r using general procedure 5 and purified using reverse-phase (C₁₈) preparative-HPLC (MeCN/0.4% acetic acid in water, 5.0 mL/min, monitor wavelength = 255 nm, 5–23% MeCN over 6 min, ramp to 95% MeCN over 0.5 min, and hold at 95% for 3.5 min) to provide a tan solid as a mixture of diastereomers (49 mg, 80% yield) (dr = 2.5:1). This compound appears to be unstable and significant decomposition was observed under prolonged storage; 85% ee for major diastereomer; $[\alpha]_D^{25}$ +49.0 (*c* 1.01, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 8.60 – 8.57 (m, 1H), 7.72 – 7.67 (m, 2H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.22 – 7.11 (m, 4H, integration overlapped with minor diastereomer), 4.41 – 4.39 (m, 1H), 4.23 –

4.20 (m, 1H, integration overlapped with minor diastereomer), 4.07 (dd, J = 11.1, 3.4 Hz, 1H), 3.85 (dd, J = 11.0, 6.4 Hz, 1H), 3.08 – 3.00 (m, 2H, integration overlapped with minor diastereomer); ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 149.4, 137.0, 136.0, 135.3, 129.4, 126.7, 126.5, 125.4, 122.6, 121.1, 66.4, 58.6, 58.0, 36.5; IR (Neat Film, NaCl) 3300, 3056, 2934, 1592, 1574, 1473, 1454, 1435, 1316, 1142, 1060, 910, 744 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₅H₁₇N₂O [M+H]⁺: 241.1335, found 241.1334; SFC Conditions: 30% IPA, 2.5 mL/min, Chiralpak OD-H column, $\lambda = 210$ nm, t_R (min): minor = 2.52, major = 2.79.

((1*S*,3*R*)-7-fluoro-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (10a): Compound 10a was prepared from isoquinoline 9a using general procedure 5 and purified by column chromatography (30% EtOAc in hexanes + 1% NEt₃) to provide a pale yellow solid as a mixture of diastereomers (49 mg, 94% yield) (dr = 11.5:1); 93% ee for major diastereomer; $[\alpha]_D^{25}$ +76.9 (*c* 1.04, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 2H), 7.40 – 7.36 (m, 2H), 7.33 – 7.30 (m, 1H), 7.08 (dd, *J* = 8.4, 5.8 Hz, 1H), 6.97 – 6.87 (m, 2H), 4.38 – 4.36 (m, 1H), 4.06 (dd, *J* = 10.8, 3.7 Hz, 1H), 3.99 (dd, *J* = 10.9, 3.3 Hz, 1H), 3.86 (dd, *J* = 10.9, 5.2 Hz, 1H), 3.00 – 2.82 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5 (d, J = 243.8 Hz), 144.0, 136.9 (d, *J* = 6.8 Hz), 132.2 (d, *J* = 3.0 Hz), 130.6 (d, *J* = 7.9 Hz), 128.8, 127.8, 126.8, 113.9 (d, *J* = 21.3 Hz), 112.1 (d, *J* = 21.8 Hz), 66.4, 58.6 (d, *J* = 2.1 Hz), 57.7, 38.2; ¹⁹F NMR (282 MHz, CDCl₃) δ –116.2 – -116.4 (m); IR (Neat Film, NaCl) 3309, 2918, 1614, 1498, 1455, 1428, 1255, 1221, 1031, 911, 868, 808, 758, 745, 700 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₇FNO [M+H]⁺: 258.1289, found 258.1281; SFC Conditions: 40% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 2.56, minor = 3.04.

((1*S*,3*R*)-7-fluoro-3-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (10b): Compound 10b was prepared from isoquinoline 9b using general procedure 5 and purified by column chromatography (30% to 40% EtOAc in hexanes + 1% NEt₃) to provide a pale yellow solid as a single diastereomer (57 mg, 99% yield); 90% ee; $[\alpha]_D^{25}$ +57.8 (*c* 0.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.34 (m, 2H), 7.07 (dd, *J* = 8.4, 5.8 Hz, 1H), 6.97 – 6.84 (m, 4H), 4.36 – 4.34 (m, 1H), 3.99 (ddd, *J* = 12.3, 10.9, 3.4 Hz, 2H), 3.86 – 3.84 (m, 1H), 3.82 (s, 3H), 2.99 – 2.87 (m, 1H), 2.83 (dd, J = 15.6, 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5 (d, J = 243.7 Hz), 159.2, 136.9 (d, J = 6.7 Hz), 136.2, 132.3, 130.6 (d, J = 7.9 Hz), 127.9, 114.1, 113.8 (d, J = 21.3 Hz), 112.1 (d, J = 21.8 Hz), 66.4, 58.7 (d, J = 2.0 Hz), 57.1, 55.5, 38.3; ¹⁹F NMR (282 MHz, CDCl₃) δ –116.3 – –116.4 (m); IR (Neat Film, NaCl) 3305, 2930, 2838, 1614, 1591, 1514, 1498, 1304, 1249, 1178, 1111, 1034, 912, 868, 830, 816, 736 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₇H₁₉FNO₂ [M+H]⁺: 288.1394, found 288.1404; SFC Conditions: 30% IPA, 2.5 mL/min, Chiralpak OJ-H column, $\lambda = 210$ nm, t_R (min): major = 1.93, minor = 2.42.

((1S,3R)-7-fluoro-3-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinolin-1-

yl)methanol (10c): Compound 10c was prepared from isoquinoline 9c using general procedure 5 and purified by column chromatography (20% to 30% EtOAc in hexanes + 1% NEt₃) to provide a pale yellow solid as a mixture of diastereomers (50 mg, 77% yield) (dr = 6.7:1); 94% ee for major diastereomer; $[\alpha]_D^{25}$ +44.2 (*c* 1.002, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.1 Hz, 2H), 7.09 (dd, *J* = 8.4, 5.7 Hz, 1H), 7.00 – 6.87 (m, 2H), 4.39 – 4.37 (m, 1H), 4.13 (dd, *J* = 8.9, 5.7 Hz, 1H), 4.02 (dd, *J* = 10.9, 3.3 Hz, 1H), 3.88 (dd, *J* = 10.9, 5.4 Hz, 1H), 2.94 – 2.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.6 (d, *J* = 244.2 Hz), 148.0, 136.7 (d, *J* = 6.7 Hz), 131.5 (d, *J* = 3.1 Hz), 130.6 (d, *J* = 7.9 Hz), 130.1 (q, *J* = 32.5 Hz), 127.2, 125.7 (q, *J* = 3.8 Hz), 124.2 (q, *J* = 272.1 Hz), 114.0 (d, J = 21.3 Hz), 112.1 (d, *J* = 21.9 Hz) 66.4, 58.5 (d, *J* = 2.0 Hz), 57.4, 38.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -62.5, – 115.8 – -115.9 (m); IR (Neat Film, NaCl) 3304, 2922, 1620, 1593, 1500, 1428, 1326, 1255, 1222, 1165, 1125, 1068, 1018, 868, 836, 816 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₆F₄NO [M+H]⁺: 326.1163, found 326.1175; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 3.93, minor = 4.46.

((5*S*,7*R*)-7-phenyl-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-*g*]isoquinolin-5-yl)methanol (10d): Compound 10d was prepared from isoquinoline 9d using general procedure 5 and purified by column chromatography (75% EtOAc in hexanes + 1% NEt₃) to provide a pale beige solid as a mixture of diastereomers (17 mg, 30% yield) (dr = 4.9:1); 58% ee for major diastereomer; $\lceil \alpha \rceil_D^{25}$

+29.2 (*c* 0.940, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 2H), 7.39 – 7.37 (m, 2H), 7.33 – 7.27 (m, 1H), 6.71 (s, 1H), 6.60 – 6.58 (m, 1H), 5.95 – 5.89 (m, 2H), 4.32 – 4.30 (m, 1H), 4.04 (dd, J = 11.1, 3.4 Hz, 1H), 3.93 (dd, J = 10.9, 3.2 Hz, 1H), 3.82 (dd, J = 10.9, 5.1 Hz, 1H), 2.97 – 2.88 (m, 1H), 2.78 (dd, J = 15.5, 3.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 146.4, 144.2, 130.0, 128.8, 127.9, 127.7, 126.8, 109.0, 105.5, 101.0, 66.7, 58.6, 57.7, 39.0; IR (Neat Film, NaCl) 3324, 3028, 2897, 1504, 1486, 1454, 1434, 1384, 1306, 1279, 1231, 1128, 1038, 936, 910, 858, 750, 733, 701 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₁₈NO₃ [M+H]⁺: 284.1281, found 284.1276; SFC Conditions: 45% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 5.00, minor = 7.22.

((5*S*,7*R*)-7-(3,4-dimethoxyphenyl)-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-*g*]isoquinolin-5yl)methanol (10e): Compound 10e was prepared from isoquinoline 9e using general procedure 5 and purified by column chromatography (100% EtOAc to 10% MeOH in EtOAc + 1% NEt₃) to provide a pale yellow solid as a single diastereomer (28 mg, 41% yield); 54% ee; $[\alpha]_D^{25}$ +25.5 (*c* 0.197, CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 6.99 – 6.96 (m, 2H), 6.87 – 6.85 (m, 1H), 6.71 (s, 1H), 6.60 – 6.58 (m, 1H), 5.94 – 5.91 (m, 2H), 4.32 – 4.30 (m, 1H), 3.99 (dd, *J* = 11.1, 3.4 Hz, 1H), 3.94 (dd, *J* = 11.1, 3.4 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.83 (dd, *J* = 11.0, 5.0 Hz, 1H), 2.97 – 2.85 (m, 1H), 2.76 (dd, *J* = 15.6, 3.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 148.7, 146.7, 146.5, 136.9, 130.1, 127.8, 119.0, 111.4, 110.0, 109.1, 105.6, 101.1, 66.7, 58.8, 57.7, 56.2, 39.1; IR (Neat Film, NaCl) 3374, 2890, 2360, 1505, 1487, 1268, 1260, 1237, 1140, 1076, 1024, 971, 932, 918, 730 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₉H₂₂NO₅ [M+H]⁺: 344.1492, found 344.1483; SFC Conditions: 45% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 3.89, minor = 5.16.

((2*R*,4*S*)-2-phenyl-1,2,3,4-tetrahydrobenzo[/]isoquinolin-4-yl)methanol (10f): Compound 10f was prepared from isoquinoline 9f using general procedure 5 and purified by column chromatography (40% to 60% EtOAc in hexanes + 1% NEt₃) to provide a pale yellow solid as a mixture of diastereomers (25 mg, 43% yield) (dr = 15.7:1); 82% ee for major diastereomer; $[\alpha]_D^{25}$ +85.7 (*c* 1.01, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.91 (m,

1H), 7.85 – 7.82 (m, 1H), 7.75 (d, J = 8.6 Hz, 1H), 7.55 (d, J = 7.2 Hz, 2H), 7.50 – 7.47 (m, 2H), 7.45 – 7.34 (m, 4H), 4.61 – 4.59 (m, 1H), 4.20 (dd, J = 11.0, 3.4 Hz, 1H), 4.09 (dd, J = 10.9, 3.2 Hz, 1H), 4.01 (dd, J = 10.9, 4.8 Hz, 1H), 3.50 – 3.39 (m, 1H), 3.23 – 3.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 132.2, 132.1, 132.0, 131.9, 128.8, 128.4, 127.7, 126.8, 126.7, 126.3, 125.5, 123.4, 122.9, 66.4, 59.1, 57.6, 35.4; IR (Neat Film, NaCl) 3306, 3056, 2918, 1417, 1308, 1034, 910, 884, 813, 762, 700, 736, 682 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₀H₂₀NO [M+H]⁺: 290.1539, found 290.1534; SFC Conditions: 45% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 5.31, minor = 10.01.

((1*S*,3*R*)-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl acetate (12a): Compound 12a was prepared from isoquinoline 11a using general procedure 5 and purified by column chromatography (5% EtOAc in CH₂Cl₂ + 1% NEt₃) to provide a yellow oil as a single diastereomer (32 mg, 56% yield); 86% ee; $[\alpha]_D^{25}$ +103.8 (*c* 1.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.41 – 7.37 (m, 2H), 7.34 – 7.30 (m, 1H), 7.27 – 7.24 (m, 1H), 7.23 – 7.18 (m, 2H), 7.16 – 7.10 (m, 1H), 4.78 (dd, *J* = 10.8, 3.5 Hz, 1H), 4.54 – 4.51 (m, 1H), 4.14 (dd, *J* = 10.8, 8.7 Hz, 1H), 4.05 (dd, *J* = 11.1, 3.4 Hz, 1H), 3.08 – 3.01 (m, 1H), 2.90 (dd, *J* = 15.5, 3.6 Hz, 1H), 2.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 144.4, 136.3, 134.1, 129.5, 128.8, 127.7, 126.9, 126.9, 126.3, 125.3, 69.1, 57.9, 56.4, 39.2, 21.2; IR (Neat Film, NaCl) 3024, 2926, 2802, 1741, 1494, 1454, 1386, 1366, 1314, 1229, 1118, 1034, 754, 701 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₈H₂₀NO₂ [M+H]⁺: 282.1489, found 282.1492; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralpak OJ-H column, λ = 210 nm, t_R (min): major = 3.32, major = 3.93.

(1*S*,3*R*)-1-(methoxymethyl)-3-phenyl-1,2,3,4-tetrahydroisoquinoline (12b): Compound 12b was prepared from isoquinoline 11b using general procedure 5 and purified by column chromatography (10% EtOAc in CH₂Cl₂+ 1% NEt₃) to provide a viscous yellow oil as a single diastereomer (40 mg, 80% yield); 89% ee; $[\alpha]_D^{25}$ +94.3 (*c* 0.98, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.46 (m, 2H), 7.39 – 7.35 (m, 2H), 7.32 – 7.27 (m, 1H), 7.25 – 7.20 (m, 1H), 7.20 – 7.15 (m, 2H), 7.16 – 7.10 (m, 1H), 4.45 – 4.42 (m, 1H), 4.07 – 3.94 (m, 2H), 3.59 (t, *J* =

8.7 Hz, 1H), 3.43 (s, 3H), 3.06 (dd, J = 16.0, 11.1 Hz, 1H), 2.92 (dd, J = 16.0, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 136.3, 135.4, 129.5, 128.7, 127.5, 126.9, 126.6, 126.1, 124.8, 59.3, 58.1, 57.4, 39.0; IR (Neat Film, NaCl) 3028, 2895, 2812, 1604, 1494, 1454, 1313, 1194, 1112, 1072, 1030, 958, 923, 840, 744, 700 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₇H₂₀NO [M+H]⁺: 254.1539, found 254.1531; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralpak OD-H column, $\lambda = 210$ nm, t_R (min): major = 4.82, major = 5.25.

(1*S*,3*R*)-1-((benzyloxy)methyl)-3-phenyl-1,2,3,4-tetrahydroisoquinoline (12c): Compound 12c was prepared from isoquinoline 11c using general procedure 5 and purified by column chromatography (5% EtOAc in CH₂Cl₂ + 1% NEt₃) to provide a pale yellow oil as a single diastereomer (60 mg, 90% yield); 88% ee; $[\alpha]_D^{25}$ +80.4 (*c* 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.46 (m, 2H), 7.40 – 7.34 (m, 6H), 7.32 – 7.28 (m, 2H), 7.22 – 7.16 (m, 3H), 7.14 – 7.11 (m, 1H), 4.61 (s, 2H), 4.48 (dd, *J* = 8.7, 3.4 Hz, 1H), 4.12 (dd, *J* = 9.0, 3.6 Hz, 1H), 4.04 (dd, *J* = 11.1, 3.5 Hz, 1H), 3.67 (t, *J* = 8.7 Hz, 1H), 3.05 (dd, *J* = 15.9, 11.1 Hz, 1H), 2.91 (dd, *J* = 15.8, 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 138.3, 136.3, 135.3, 129.5, 128.7, 128.6, 127.9, 127.8, 127.5, 126.9, 126.6, 126.1, 124.9, 74.8, 73.6, 58.1, 57.5, 39.2; IR (Neat Film, NaCl) 3060, 3028, 2862, 1494, 1454, 1366, 1312, 1098, 1028, 742, 698 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₃H₂₄NO [M+H]⁺: 330.1852, found 330.1857; SFC Conditions: 25% IPA, 2.5 mL/min, Chiralpak OD-H column, λ = 210 nm, t_R (min): major = 5.66, major = 6.38.

tert-butyl (((1*S*,3*R*)-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl)carbamate (12d): Compound 12d was prepared from isoquinoline 11d using general procedure 5 and purified by column chromatography (15% EtOAc in hexanes + 1% NEt₃) to provide a white solid as a mixture of diastereomers (44 mg, 71% yield) (dr = 9.0:1); 90% ee for major diastereomer; $[\alpha]_D^{25}$ +50.4 (*c* 0.99, CHCl₃); Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.1 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.36 – 7.26 (m, 2H), 7.26 – 7.14 (m, 2H), 7.11 (d, *J* = 6.7 Hz, 1H), 5.02 (s, 1H), 4.44 (s, 1H), 4.04 (dd, *J* = 11.0, 3.5 Hz, 1H), 3.77 – 3.72 (m, 1H), 3.49 (dt, *J* = 13.2, 6.3 Hz, 1H), 3.00 (dd, *J* = 15.8, 10.9 Hz, 1H), 2.89 (dd, *J* = 15.8, 3.5 Hz, 1H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 144.4, 136.4, 135.2, 129.2, 128.7, 127.7, 126.8, 126.6, 126.4, 125.7, 79.4, 58.0, 57.1, 46.3, 39.1, 28.5; IR (Neat Film, NaCl) 3352, 2978, 2932, 1704, 1495, 1455, 1392, 1366, 1247, 1171, 752, 701 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₁H₂₇N₂O₂ [M+H]⁺: 339.2067, found 339.2063; SFC Conditions: 40% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 1.41, major = 1.76.

(1*R*,3*R*)-1-methyl-3-phenyl-1,2,3,4-tetrahydroisoquinoline (12e): Compound 12e was prepared from 1-methyl-3-phenylisoquinoline using general procedure 5 and purified by column chromatography (10% to 20% EtOAc in hexanes + 1% NEt₃) to provide a colorless oil as a single diastereomer (29 mg, 64% yield); 90% ee; $[\alpha]_D^{25}$ +133.3 (*c* 0.79, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.46 (m, 2H), 7.41 – 7.37 (m, 2H), 7.33 – 7.29 (m, 1H), 7.28 – 7.23 (m, 1H), 7.23 – 7.14 (m, 2H), 7.11 (d, *J* = 6.9 Hz, 1H), 4.34 (q, *J* = 6.6 Hz, 1H), 4.08 (dd, *J* = 11.1, 3.9 Hz, 1H), 3.12 – 3.01 (m, 1H), 2.96 (dd, *J* = 16.2, 4.1 Hz, 1H), 1.55 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 139.9, 135.2, 129.1, 128.7, 127.5, 126.7, 126.2, 126.2, 125.4, 58.8, 53.6, 38.9, 22.4; IR (Neat Film, NaCl) 3024, 2962, 2926, 2792, 1602, 1494, 1453, 1372, 1352, 1306, 1140, 1118, 1031, 790, 753, 733, 700 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₆H₁₈N [M+H]⁺: 224.1434, found 224.1426; SFC Conditions: 20% IPA, 3.5 mL/min, Chiralpak AS-H column, $\lambda = 210$ nm, t_R (min): major = 2.16, minor = 2.62.

Additional Optimization Results

Table S1. Additional Ligand Screen

Table S2. Additive Effects^a

entry	salt additive	acid	% conversion ^b	cis:trans ^b	% ee of cis ^c
1	TBAI	AcOH	>95	10:1	89
2	Lil	AcOH	>95	10:1	89
3	Nal	AcOH	>95	10:1	90
4	KI	AcOH	92	10:1	87
5	TBACI	AcOH	>95	1:1.2	31
6	TBABr	AcOH	>95	1.2:1	63
7	none	AcOH	50	1:1	27
8	TBAI	none	31	ND	67
9	TBAI	TFA	>95	10:1	90
10	TBAI	(n-BuO) ₂ PO ₂ H	>95	7:1	84

^aConditions: 0.04 mmol *1*, 1.25 mol % [Ir(COD)CI]₂, 3 mol % ligand, 7.5 mol % salt additive, 60 bar H₂ in 2.0 mL 9:1 THF:acid. ^bDetermined from crude 1H NMR using trimethoxybenzene as a standard. ^cDetermined by chiral SFC analysis of Cbz-protected product.

Experimental Procedure for Product Transformations:

To a 1-dram vial equipped with a stir bar was added tetrahydroisoquinoline **81** (20.0 mg, 0.067 mmol) in 1,2-dichloroethane (1.3 mL, 0.05 M). Formaldehyde solution (37 wt% in H₂O, 9.2 μ L, 0.124 mmol) was then added and the reaction was stirred for 15 minutes at room temperature. The reaction was then basified with K₂CO₃, and extracted with CH₂Cl₂. The collected organic layers were dried over Na₂SO₄, and concentrated under vacuum. The crude product was purified by column chromatography (50% EtOAc in hexanes + 1% NEt₃) to afford **13** as a white solid (19.3 mg, 93% yield): [α]_D²⁵ +134.8 (*c* 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.14 (m, 3H), 7.04 (d, *J* = 2.0 Hz, 1H), 7.02 – 6.90 (m, 2H), 6.83 (d, *J* = 8.2 Hz, 1H), 4.58 – 4.43 (m, 2H), 3.97 (t, *J* = 7.6 Hz, 1H), 3.94 – 3.87 (m, 2H), 3.89 (s, 6H), 3.83 (dd, *J* = 10.6, 4.8 Hz, 1H), 3.23 (dd, *J* = 16.8, 10.6 Hz, 1H), 3.11 (dd, *J* = 16.8, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ

149.4, 148.7, 135.1, 134.7, 134.6, 128.6, 127.2, 126.3, 125.0, 119.6, 110.9, 110.2, 84.2, 71.5, 62.9, 61.3, 56.1, 56.0, 37.3; IR (Neat Film, NaCl) 2930, 1592, 1513, 1454, 1263, 1237, 1167, 1060, 1027, 918, 752, 680 cm⁻¹; HRMS (MM:ESI-APCI+) m/z calc'd for C₁₉H₂₂NO₃ [M+H]⁺: 312.1594, found 312.1594.

To a 1-dram vial equipped with a stir bar was added tetrahydroisoquinoline **8I** (10.0 mg, 0.033 mmol), THF (0.7 mL, 0.05 M), and CDI (21.7 mg, 0.134 mmol). The solution was stirred at 50 °C for 15 h. After complete conversion of the starting material monitored by TLC, the reaction concentrated and the crude product was purified by preparative-TLC (100% EtOAc) to afford **14** as a white solid (9.2 mg, 84% yield): $[\alpha]_D^{25}$ +71.4 (*c* 0.76, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, *J* = 8.3, 7.0 Hz, 1H), 7.30 – 7.23 (m, 1H), 7.08 (t, *J* = 6.6 Hz, 2H), 6.66 (d, *J* = 8.2 Hz, 1H), 6.52 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.33 (d, *J* = 2.1 Hz, 1H), 5.14 – 5.02 (m, 2H), 4.92 (t, *J* = 7.9 Hz, 1H), 4.49 (dd, *J* = 10.1, 8.2 Hz, 1H), 3.78 (s, 3H), 3.60 (s, 3H), 3.36 (dd, *J* = 14.9, 6.4 Hz, 1H), 2.99 (dd, *J* = 14.9, 2.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.1, 148.7, 148.3, 136.0, 134.2, 133.9, 129.4, 128.5, 127.5, 122.4, 118.5, 110.9, 109.3, 67.5, 55.9, 55.6, 54.6, 53.4, 36.8; IR (Neat Film, NaCl) 2933, 1756, 1515, 1464, 1396, 1260, 1234, 1139, 1025, 779, 762, 748 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₁₉H₂₀NO₄ [M+H]⁺: 326.1387, found 326.1386.

To a 1-dram vial equipped with a stir bar was added tetrahydroisoquinoline **81** (20.0 mg, 0.067 mmol) in 1,2-dichloroethane (1.3 mL, 0.05 M). Glyoxal solution (40 wt% in H₂O, 0.15 mL, 1.336 mmol) was then added, and the reaction was stirred at room temperature overnight. After complete conversion of the starting material monitored by TLC, the reaction was diluted with H₂O, and extracted with CH₂Cl₂. The collected organic layers were dried over Na₂SO₄, and concentrated under vacuum. The crude product was purified by preparative-TLC (50% EtOAc in hexanes) to afford **15** as a white solid (9.2 mg, 41% yield): $[\alpha]_D^{25}$ +187.8 (*c* 0.61, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.20 (m, 2H), 7.20 – 7.10 (m, 2H), 6.95 – 6.81 (m, 3H), 4.84

(dd, J = 10.5, 3.4 Hz, 1H), 4.33 (t, J = 10.7 Hz, 1H), 4.04 – 3.94 (m, 1H), 3.90 (s, 6H), 3.62 (d, J = 17.7 Hz, 1H), 3.43 (dd, J = 11.2, 3.2 Hz, 1H), 3.32 – 3.19 (m, 1H), 2.98 – 2.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 149.8, 149.1, 135.0, 132.8, 130.6, 129.1, 127.7, 126.7, 124.7, 120.5, 111.4, 110.2, 73.3, 63.8, 59.5, 56.1, 56.1, 54.9, 38.9; IR (Neat Film, NaCl) 2932, 1745, 1511, 1463, 1421, 1263, 1242, 1137, 1028, 809, 746 cm⁻¹; HRMS (MM:ESI-APCI+) *m/z* calc'd for C₂₀H₂₂NO₄ [M+H]⁺: 340.1543, found 340.1545.

To a 1-dram vial equipped with a stir bar was added tetrahydroisoquinoline **81** (10.0 mg, 0.033 mmol) in 1,2-dichloroethane (0.5 mL, 0.07 M). 2,2-Dimethoxyacetaldehyde solution (60 wt% in H₂O, 9.2 μ L, 0.061 mmol) was then added and the reaction stirred at room temperature overnight. The reaction was then concentrated under vacuum to afford a yellow oil, which was then used in the next step without further purification.

To a 1-dram vial was added the crude product and CH_2Cl_2 (0.5 mL, 0.07 M). Eaton's reagent (0.28 mL, 0.134 mmol) was then added dropwise, and the reaction was stirred for 3 hours. The reaction was then quenched by slow addition of saturated aqueous NaHCO₃, diluted with H₂O and extracted with CH_2Cl_2 . The collected organic phases were dried over Na₂SO₄, and concentrated under vacuum. The crude product was purified by preparative-TLC (100% EtOAc) twice to afford **16** as a white solid as a single diastereomer (4.3 mg, 38% yield over 2 steps): $[\alpha]_D^{25}$ +32.0 (*c* 0.29, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.26 (m, 1H), 7.24 – 7.20 (m, 1H), 7.16 (d, *J* = 6.0 Hz, 1H), 7.08 (d, *J* = 6.8 Hz, 1H), 6.97 (s, 1H), 6.69 (s, 1H), 4.89 – 4.82 (m, 1H), 4.79 (t, *J* = 7.8 Hz, 1H), 4.71 (dd, *J* = 8.3, 2.1 Hz, 1H), 4.65 (d, *J* = 2.1 Hz, 1H), 4.47 (dd, *J* = 9.1, 7.0 Hz, 1H), 3.93 (s, 3H), 3.91 (s, 3H), 3.86 (dd, *J* = 7.9, 5.3 Hz, 1H), 2.89 – 2.87 (m, 2H), 2.79 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 148.6, 136.5, 133.1, 130.9, 129.3, 127.3, 126.8, 126.6, 113.6, 109.2, 86.7, 74.4, 67.9, 57.3, 56.2, 56.1, 54.2, 31.1; IR (Neat Film, NaCl) 3442, 2918, 1610, 1515, 1464, 1380, 1353, 1270, 1242, 1160, 1117, 1074, 1010, 868, 762, 732, 642 cm⁻¹; HRMS (MM:ESI-APCI+) *m*/z calc'd for C₂₀H₂₂NO₄ [M+H]⁺: 340.1543, found 340.1548.

The stereochemistry of **16** was assigned using diagnostic nOe correlations (highlighted arrows, *vide infra*). Due to the ambiguous nOe correlations observed in **16**, the stereochemistry was determined by derivatizing the hydroxyl group of **16** to the methoxy group.

2D NOESY NMR of compound 16•Me.

Alternative route to access oxazolidinone 14:

To a 1-dram vial equipped with a stir bar was added Boc₂O (30.0 mg, 0.10 mmol) in CH₂Cl₂ (0.05 mL, 2.5 M). A solution of tetrahydroisoquinoline **2l** (20 mg, 0.07 mmol) in CH₂Cl₂ (0.95 mL, 0.11 M) was then added, followed by 0.1 mL of saturated solution of NaHCO₃. The reaction was stirred at room temperature overnight, then concentrated under vacuum to afford an orange oil, which was used in the next step without purification. To a scintillation vial was added the crude product, CBr₄ (50 mg, 0.15 mmol), and CH₂Cl₂ (1.0 mL, 0.1 M), and the reaction was cooled to 0 °C. PPh₃ (39 mg, 0.15 mmol) was then added to the solution, and the reaction was warmed to room temperature. After stirring overnight, the crude reaction was filtered over celite, and rinsed with EtOAc and CH₂Cl₂. The crude product was purified by column chromatography (10% EtOAc in CH₂Cl₂) to afford **14** as a white solid (16.6 mg, 51% yield over 2 steps).

entry	compound	SFC analytic conditions	ee (%)
1	NCbz OH 8a-Cbz	Chiralpak AD-H, λ = 210 nm 45% IPA/CO ₂ , 3.5 mL/min t _R (min) major 2.34, minor 4.02	92
2	NCbz OH 8b-Cbz	Chiralpak AD-H, λ = 210 nm 45% IPA/CO ₂ , 3.5 mL/min t _R (min) major 1.81, minor 2.73	91
3	Ph NCbz OH 8c-Cbz	Chiracel AD-H, λ = 210 nm 45% IPA/CO ₂ , 3.5 mL/min t _R (min) major 4.08, minor 5.18	92
4	ON NCbz OH 8d-Cbz	le Chiralpak AD-H, λ = 210 nm 45% IPA/CO2, 2.5 mL/min tκ (min) major 2.59, minor 3.61	92
5	NCbz OH 8e-Cbz	Chiralpak AD-H, λ = 210 nm 45% IPA/CO2, 2.5 mL/min tR (min) major 1.93, minor 2.87	93
6	CF NCbz OH 8f-Cbz	3 Chiralpak AD-H, λ = 210 nm 25% IPA/CO2, 2.5 mL/min tκ (min) major 3.11, minor 5.54	92

Table S3. Determination of Enantiomeric Excess

entry	compound	SFC analytic conditions	ee (%)
25	NCbz OAc 12a-Cbz	Chiralpak OJ-H, λ = 210 nm 20% IPA/CO ₂ , 2.5 mL/min t _R (min) major 3.32, minor 3.93	86
26	NCbz OMe 12b-Cbz	Chiracel OD-H, λ = 210 nm 20% IPA/CO ₂ , 2.5 mL/min t _R (min) major 4.82, minor 5.25	89
27	NCbz OBn 12c-Cbz	Chiralpak OD-H, λ = 210 nm 25% IPA/CO2, 2.5 mL/min tr (min) major 5.66, minor 6.38	88
28	NCbz NHBoc 12d-Cbz	Chiralpak AD-H, λ = 210 nm 40% IPA/CO2, 2.5 mL/min tR (min) major 1.41, minor 1.76	90
29	NCbz Me 12e-Cbz	Chiralpak AS-H, λ = 210 nm 20% IPA/CO ₂ , 3.5 mL/min t _R (min) major 2.16, minor 2.62	90

X-Ray Crystal Structure Data for Hydrogenated Product 8p

The tetrahydroisoquinoline product **8p** (87% ee) was crystallized by slow evaporation from chloroform at 23 $^{\circ}$ C to provide crystals suitable for X-ray analysis.

Compound d19110 crystallizes in the monoclinic space group $P2_1(#4)$ with one molecule in the asymmetric unit. The S atom and one C atom were disordered 60:40; the anisotropic displacement parameters of each of the C S bonded pairs were constrained to be the same

Table S4. Crystal data and structure refinement for d19110.

Identification code	d19110	d19110			
Empirical formula	C14 H15 N O S	C14 H15 N O S			
Formula weight	245.33				
Temperature	100 K				
Wavelength	0.71073 Å				
Crystal system	Monoclinic				
Space group	P 1 21 1				
Unit cell dimensions	a = 8.3309(19) Å	a= 90°			
	b = 6.6556(18) Å	b=96.337(8)°			
	c = 10.916(3) Å	$g = 90^{\circ}$			
Volume	601.6(3) Å ³				
Ζ	2				
Density (calculated)	1.354 g/cm^3				
Absorption coefficient	0.251 mm ⁻¹				
F(000)	260				
Crystal size	0.38 x 0.17 x 0.08 mm ³				
Theta range for data collection	1.877 to 35.613°.	1.877 to 35.613°.			
Index ranges	-13 £ h £ 13, -10 £ k £	10, -17 £1£17			

Reflections collected	25734
Independent reflections	5228 [R(int) = 0.0337]
Completeness to theta = 25.242°	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.9299
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5228 / 1 / 209
Goodness-of-fit on F ²	1.058
Final R indices [I>2sigma(I)]	R1 = 0.0383, wR2 = 0.0909
R indices (all data)	R1 = 0.0484, wR2 = 0.0960
Absolute structure parameter [Flack]	0.04(2)
Absolute structure parameter [Hooft]	0.03(2)
Extinction coefficient	n/a
Largest diff. peak and hole	0.457 and -0.227 e.Å ⁻³

Table S5. Atomic coordinates (x 10⁵), equivalent isotropic displacement parameters ($Å^2x$ 10⁴), and population for d19110. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	z U(eq)	рор
S(1)	-1782(9)	10112(13)	8554(8) 192(2)	0.61(1)
S(1A)	-12835(17)	26880(20)	15351(16) 200(4)	0.40(1)
O(1)	46731(15)	90530(20)	2239(13) 250(3)	1
N(1)	38190(14)	60130(20)	16462(10) 126(2)	1
C(1)	31520(15)	47500(20)	25761(12) 119(2)	1
C(2)	45361(17)	34360(20)	31317(14) 146(2)	1
C(3)	59104(16)	47440(20)	36870(12) 135(2)	1
C(4)	69583(19)	40430(30)	46858(14) 193(3)	1
C(5)	81732(19)	52630(30)	52519(15) 236(3)	1
C(6)	83610(20)	71900(30)	48189(15) 243(4)	1
C(7)	73300(20)	79110(30)	38302(15) 210(3)	1
C(8)	60916(17)	66970(20)	32554(13) 140(2)	1
C(9)	49394(17)	75610(20)	22155(13) 133(2)	1
C(10)	58373(18)	84320(30)	11976(14) 174(3)	1
C(11)	16954(16)	36170(20)	20222(13) 127(2)	1
C(12)	17083(17)	18760(20)	13110(13) 147(2)	1
C(13)	-10370(60)	29940(90)	16190(50) 192(2)	0.61(1)
C(13A)	1840(80)	11730(130)	9760(70) 200(4)	0.40(1)

C(14)	1166(19)	42160(30)	21889(15)	177(3)	1
-------	----------	-----------	-----------	--------	---

S(1)-C(12)	1.6959(16)
S(1)-C(13)	1.755(6)
S(1A)-C(13A)	1.746(9)
S(1A)-C(14)	1.6492(19)
O(1)-H(1)	0.93(3)
O(1)-C(10)	1.419(2)
N(1)-H(1A)	0.90(2)
N(1)-C(1)	1.4732(18)
N(1)-C(9)	1.4799(19)
C(1)-H(1B)	1.03(2)
C(1)-C(2)	1.5193(19)
C(1)-C(11)	1.4985(19)
C(2)-H(2A)	0.98(2)
C(2)-H(2B)	1.00(2)
C(2)-C(3)	1.511(2)
C(3)-C(4)	1.400(2)
C(3)-C(8)	1.396(2)
C(4)-H(4)	0.91(3)
C(4)-C(5)	1.389(2)
C(5)-H(5)	0.93(3)
C(5)-C(6)	1.382(3)
C(6)-H(6)	0.85(3)
C(6)-C(7)	1.388(3)
C(7)-H(7)	0.99(3)
C(7)-C(8)	1.403(2)
C(8)-C(9)	1.517(2)
C(9)-H(9)	0.99(2)
C(9)-C(10)	1.521(2)
C(10)-H(10A)	0.96(3)
C(10)-H(10B)	1.01(3)
C(11)-C(12)	1.395(2)
C(11)-C(14)	1.405(2)
C(12)-C(13A)	1.365(6)
C(12)-H(12)	0.94(2)
C(12)-H(12A)	0.94(2)
C(13)-H(13)	0.91(5)

Table S6. Bond lengths [Å] and angles [°] for d19110.

C(13)-C(14)	1.357(5)
C(13A)-H(13A)	1.04(8)
C(14)-H(14A)	0.90(3)
C(14)-H(14)	0.90(3)
C(12)-S(1)-C(13)	91.08(18)
C(14)-S(1A)-C(13A)	91.0(2)
C(10)-O(1)-H(1)	112.9(17)
C(1)-N(1)-H(1A)	108.6(14)
C(1)-N(1)-C(9)	112.10(10)
C(9)-N(1)-H(1A)	106.4(15)
N(1)-C(1)-H(1B)	110.5(13)
N(1)-C(1)-C(2)	106.04(11)
N(1)-C(1)-C(11)	111.07(11)
C(2)-C(1)-H(1B)	108.3(12)
C(11)-C(1)-H(1B)	106.3(12)
C(11)-C(1)-C(2)	114.61(12)
C(1)-C(2)-H(2A)	112.8(13)
C(1)-C(2)-H(2B)	110.8(13)
H(2A)-C(2)-H(2B)	106(2)
C(3)-C(2)-C(1)	109.66(12)
C(3)-C(2)-H(2A)	108.2(13)
C(3)-C(2)-H(2B)	109.0(13)
C(4)-C(3)-C(2)	120.00(14)
C(8)-C(3)-C(2)	120.42(12)
C(8)-C(3)-C(4)	119.48(14)
C(3)-C(4)-H(4)	117.4(15)
C(5)-C(4)-C(3)	120.85(16)
C(5)-C(4)-H(4)	121.3(15)
C(4)-C(5)-H(5)	120.5(18)
C(6)-C(5)-C(4)	119.70(16)
C(6)-C(5)-H(5)	119.6(18)
C(5)-C(6)-H(6)	122.3(19)
C(5)-C(6)-C(7)	120.17(15)
C(7)-C(6)-H(6)	117.3(19)
C(6)-C(7)-H(7)	122.1(15)
C(6)-C(7)-C(8)	120.68(17)
C(8)-C(7)-H(7)	117.2(15)
C(3)-C(8)-C(7)	119.12(14)
C(3)-C(8)-C(9)	121.50(12)

C(7)-C(8)-C(9)	119.33(14)
N(1)-C(9)-C(8)	111.60(12)
N(1)-C(9)-H(9)	108.5(13)
N(1)-C(9)-C(10)	107.26(12)
C(8)-C(9)-H(9)	111.2(13)
C(8)-C(9)-C(10)	111.69(12)
C(10)-C(9)-H(9)	106.4(14)
O(1)-C(10)-C(9)	107.91(12)
O(1)-C(10)-H(10A)	111.9(15)
O(1)-C(10)-H(10B)	111.6(13)
C(9)-C(10)-H(10A)	109.0(14)
C(9)-C(10)-H(10B)	110.1(14)
H(10A)-C(10)-H(10B)	106(2)
C(12)-C(11)-C(1)	125.94(13)
C(12)-C(11)-C(14)	111.87(13)
C(14)-C(11)-C(1)	122.19(13)
S(1)-C(12)-H(12)	119.9(15)
C(11)-C(12)-S(1)	112.40(11)
C(11)-C(12)-H(12)	127.7(16)
C(11)-C(12)-H(12A)	127.7(16)
C(13A)-C(12)-C(11)	111.7(4)
C(13A)-C(12)-H(12A)	120.6(16)
S(1)-C(13)-H(13)	105(3)
C(14)-C(13)-S(1)	111.3(4)
C(14)-C(13)-H(13)	143(3)
S(1A)-C(13A)-H(13A)	105(3)
C(12)-C(13A)-S(1A)	112.0(5)
C(12)-C(13A)-H(13A)	143(4)
S(1A)-C(14)-H(14A)	120.7(15)
C(11)-C(14)-S(1A)	113.35(14)
C(11)-C(14)-H(14A)	125.9(15)
C(11)-C(14)-H(14)	125.9(15)
C(13)-C(14)-C(11)	113.4(3)
C(13)-C(14)-H(14)	120.7(15)

Symmetry transformations used to generate equivalent atoms:

	U11	U ²²	U33	U23	U13	U12	
S(1)	146(4)	220(4)	204(4)	-44(3)	-7(3)	-76(3)	
S(1A)	121(7)	246(7)	223(6)	-49(5)	-15(4)	-92(4)	
O(1)	205(6)	302(7)	251(6)	151(5)	60(4)	14(5)	
N(1)	133(5)	113(5)	131(5)	14(4)	8(4)	-15(4)	
C(1)	109(5)	126(5)	121(5)	0(4)	13(4)	-11(4)	
C(2)	129(6)	135(6)	168(6)	39(5)	-7(4)	-20(5)	
C(3)	101(5)	182(6)	123(5)	1(5)	14(4)	5(5)	
C(4)	157(6)	274(8)	144(6)	12(6)	2(5)	45(5)	
C(5)	127(6)	437(10)	143(6)	-57(6)	2(5)	35(6)	
C(6)	148(6)	416(11)	167(6)	-123(7)	23(5)	-95(6)	
C(7)	191(7)	255(8)	193(6)	-75(6)	54(5)	-94(6)	
C(8)	125(5)	173(6)	126(5)	-31(5)	35(4)	-21(5)	
C(9)	150(6)	94(5)	161(6)	-5(5)	45(4)	-16(4)	
C(10)	171(6)	166(6)	191(6)	30(5)	53(5)	-35(5)	
C(11)	124(5)	138(6)	114(5)	5(4)	-2(4)	-20(4)	
C(12)	150(6)	141(6)	147(6)	-16(5)	10(4)	-27(5)	
C(13)	146(4)	220(4)	204(4)	-44(3)	-7(3)	-76(3)	
C(13A)	121(7)	246(7)	223(6)	-49(5)	-15(4)	-92(4)	
C(14)	153(6)	197(7)	186(6)	-13(5)	45(5)	-5(5)	

Table S7. Anisotropic displacement parameters $(Å^2 x \ 10^4)$ for d19110. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	X	У	Z	U(eq)	
H(1)	5130(30)	9700(50)	-410(30)	38	
H(1A)	3010(30)	6680(40)	1220(20)	15	
H(1B)	2770(20)	5620(40)	3270(20)	14	
H(2A)	4220(30)	2540(40)	3780(20)	18	
H(2B)	4930(30)	2550(40)	2490(20)	18	
H(4)	6740(30)	2820(40)	5010(20)	23	
H(5)	8820(30)	4820(50)	5950(20)	28	
H(6)	9050(30)	8010(40)	5180(20)	29	
H(7)	7390(30)	9310(40)	3530(20)	25	
H(9)	4290(30)	8670(40)	2510(20)	16	
H(10A)	6490(30)	9530(40)	1520(20)	21	
H(10B)	6600(30)	7400(40)	910(20)	21	
H(13)	-2130(60)	2800(70)	1480(40)	23	
H(13A)	-450(70)	-40(120)	550(60)	24	
H(12)	2610(30)	1210(40)	1060(20)	21	
H(12A)	2610(30)	1210(40)	1060(20)	21	
H(14A)	-150(30)	5310(40)	2600(20)	21	
H(14)	-150(30)	5310(40)	2600(20)	21	

Table S8. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for d19110.

Table S9. Torsion angles [°] for d19110.

S(1)-C(13)-C(14)-C(11)	0.6(4)
N(1)-C(1)-C(2)-C(3)	58.56(14)
N(1)-C(1)-C(11)-C(12)	78.77(18)
N(1)-C(1)-C(11)-C(14)	-102.09(16)
N(1)-C(9)-C(10)-O(1)	52.73(16)
C(1)-N(1)-C(9)-C(8)	44.46(15)
C(1)-N(1)-C(9)-C(10)	167.09(12)
C(1)-C(2)-C(3)-C(4)	151.33(13)
C(1)-C(2)-C(3)-C(8)	-25.09(17)
C(1)-C(11)-C(12)-S(1)	179.50(12)
C(1)-C(11)-C(12)-C(13A)	178.1(4)
C(1)-C(11)-C(14)-S(1A)	-177.87(13)
C(1)-C(11)-C(14)-C(13)	-179.8(3)
C(2)-C(1)-C(11)-C(12)	-41.36(19)

C(2)-C(1)-C(11)-C(14)	137.77(14)
C(2)-C(3)-C(4)-C(5)	-176.42(14)
C(2)-C(3)-C(8)-C(7)	176.81(13)
C(2)-C(3)-C(8)-C(9)	-0.66(19)
C(3)-C(4)-C(5)-C(6)	-0.5(2)
C(3)-C(8)-C(9)-N(1)	-7.99(18)
C(3)-C(8)-C(9)-C(10)	-128.05(14)
C(4)-C(3)-C(8)-C(7)	0.4(2)
C(4)-C(3)-C(8)-C(9)	-177.09(13)
C(4)-C(5)-C(6)-C(7)	0.7(2)
C(5)-C(6)-C(7)-C(8)	-0.3(2)
C(6)-C(7)-C(8)-C(3)	-0.3(2)
C(6)-C(7)-C(8)-C(9)	177.26(14)
C(7)-C(8)-C(9)-N(1)	174.55(12)
C(7)-C(8)-C(9)-C(10)	54.49(17)
C(8)-C(3)-C(4)-C(5)	0.0(2)
C(8)-C(9)-C(10)-O(1)	175.30(13)
C(9)-N(1)-C(1)-C(2)	-71.23(14)
C(9)-N(1)-C(1)-C(11)	163.67(12)
C(11)-C(1)-C(2)-C(3)	-178.55(11)
C(11)-C(12)-C(13A)-S(1A)	0.4(6)
C(12)-S(1)-C(13)-C(14)	-0.3(4)
C(12)-C(11)-C(14)-S(1A)	1.37(18)
C(12)-C(11)-C(14)-C(13)	-0.6(3)
C(13)-S(1)-C(12)-C(11)	0.0(2)
C(13A)-S(1A)-C(14)-C(11)	-0.9(3)
C(14)-S(1A)-C(13A)-C(12)	0.3(5)
C(14)-C(11)-C(12)-S(1)	0.29(16)
C(14)-C(11)-C(12)-C(13A)	-1.1(4)

Symmetry transformations used to generate equivalent atoms:

Table S10.	Hydrogen	bonds for	d19110	[Å and °]	۱.
------------	----------	-----------	--------	-----------	----

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(1)-H(1)N(1)#1	0.93(3)	1.90(3)	2.8310(18)	177(2)	

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y+1/2,-z

Determination of Relative and Absolute Configuration of 12e

Method 1 – Vibrational Circular Dichroism (VCD)

Experimental Protocol. A solution of **12e** (60 mg/mL) was prepared in CDCl₃ and loaded into a front-loading SL-4 cell (International Crystal Laboratories) possessing BaF₂ windows and 100 μ m path length. Infrared (IR) and VCD spectra were acquired on a BioTools ChiralIR-2X VCD spectrometer as a set of set of 27 one-hour blocks (27 blocks, 3120 scans per block) in dual PEM mode. A 15-minute acquisition of neat (-)- α -pinene control (separate 75 μ m BaF₂ cell) yielded a VCD spectrum in agreement with literature spectra. IR and VCD spectra were background-corrected using a 30-minute block IR acquisition of the empty instrument chamber under gentle N₂ purge, and were solvent corrected using an 8-hour (8 blocks, 3120 scans per block) IR/VCD acquisition of CDCl₃ in the same 100 μ m BaF₂ cell as used for **12e**. The reported spectra represent the result of block averaging.

Computational Protocol. The arbitrarily chosen (S,S) stereoisomer of compound 12e (S) at methyl, (S) at phenyl; thus cis) was subjected to an exhaustive initial molecular mechanics-based conformational search (MMFF94 force field, 0.08 Å geometric RMSD cutoff, and 30 kcal/mol energy window) as implemented in MOE 2019.0102 (Chemical Computing Group, Montreal, CA). All conformers retained the (S) configuration at both centers. Separately, a study involving the *trans* stereoisomer possessing the (R) configuration at the methyl group and (S)configuration at phenyl was performed in identical fashion, with stereochemical integrity again retained throughout the stochastic conformational search. All MMFF94 conformers within a 10 kcal/mol energy window were then subjected to geometry optimization, harmonic frequency calculation, and VCD rotational strength evaluation using density functional theory. A11 quantum mechanical calculations first utilized the B3LYP functional, small 6-31G* basis, and IEFPCM model (chloroform solvent) as an initial filter, followed by subsequent optimization using B3PW91 functional, cc-pVTZ basis, and implicit IEFPCM chloroform solvation model on all IEFPCM-B3LYP/6-31G* conformers below 5 kcal/mol. All calculations were performed with the Gaussian 16 program system (Rev. C.01; Frisch et al., Gaussian, Inc., Wallingford, CT). Resultant IEFPCM-B3PW91/cc-pVTZ harmonic frequencies were scaled by 0.98. All structurally unique conformers possessing all positive Hessian eigenvalues were Boltzmann weighted by relative free energy at 298.15 K. The predicted IR and VCD frequencies and intensities of the retained conformers were convolved using Lorentzian line shapes ($\gamma = 4 \text{ cm}^{-1}$) and summed using the respective Boltzmann weights to yield the final predicted IR and VCD spectra of the species described above. The predicted VCD of the corresponding enantiomers were generated by inversion of sign. From a combination of (a) the best overall agreement of (R,R)-12e with experiment among all of the theoretical spectra in the useful range of the VCD (~ 1000-1450 cm⁻¹, regions A-D; see below) coupled with (b) support of this assignment by the agreement between predicted versus measured optical rotation (see Method 2) the absolute configuration of **6e** was established as *cis* and (R,R).

Experimental (left) and computed (right) IR and VCD spectra for the *cis* isomers of **12e**. The better agreement with the (R,R) stereoisomer, upon alignment of the achiral IR spectra and correlation to VCD signals, is readily evident.

Experimental (left) and computed (right) IR and VCD spectra for the *trans* isomers of **12e**. The worse agreement with experiment between either of the predicted *trans* stereoisomers, compared to the *cis*- and (R,R) stereoisomer above, can be seen. This assertion is further supported to an extent by the optical rotation data below.

Method 2 – Optical Rotation (OR)

Computational Protocol. The ensemble of unique IEFPCM-B3PW91/cc-pVTZ conformers of **12e** generated in Method 1 above were subjected to optical rotation calculation at 589.0 nm using the B3LYP hybrid density functional, the large and diffuse 6-311++G(2df,2pd) basis set, and the IEFPCM implicit chloroform solvent model. The computed IEFPCM-B3LYP/6-311++G(2df,2pd) optical rotations (weighted by IEFPCM-B3PW91/cc-pVTZ free energies at 298.15 K) along with those resulting from alternatively weighting by either the IEFPCM-B3PW91/cc-pVTZ total energies or IEFPCM-B3LYP/6-311++G(2df,2pd)//IEFPCM-B3PW91/cc-pVTZ total energies are reported in (a)-(d) below.

Predicted optical rotation, weighted by IEFPCM-B3PW91/cc-pVTZ free energies: -144.5° Predicted optical rotations, weighted by IEFPCM-B3PW91/cc-pVTZ total energies: -144.6° Predicted optical rotations, weighted by IEFPCM-B3LYP/6-311++G(2df,2pd)//IEFPCM-B3PW91/cc-pVTZ total energies: -147.0°

Predicted optical rotation, weighted by IEFPCM-B3PW91/cc-pVTZ free energies: +144.5° Predicted optical rotations, weighted by IEFPCM-B3PW91/cc-pVTZ total energies: +144.6° Predicted optical rotations, weighted by IEFPCM-B3LYP/6-311++G(2df,2pd)//IEFPCM-B3PW91/cc-pVTZ total energies: +147.0°

Predicted optical rotation, weighted by IEFPCM-B3PW91/cc-pVTZ free energies: -94.5° Predicted optical rotations, weighted by IEFPCM-B3PW91/cc-pVTZ total energies: -101.0° Predicted optical rotations, weighted by IEFPCM-B3LYP/6-311++G(2df,2pd)//IEFPCM-B3PW91/cc-pVTZ total energies: -100.1°

Predicted optical rotation, weighted by IEFPCM-B3PW91/cc-pVTZ free energies: +94.5° Predicted optical rotations, weighted by IEFPCM-B3PW91/cc-pVTZ total energies: +101.0° Predicted optical rotations, weighted by IEFPCM-B3LYP/6-311++G(2df,2pd)//IEFPCM-B3PW91/cc-pVTZ total energies: +100.1°

Measured optical rotation: $[\alpha]_D^{25}$ +133.3 (*c* 0.79, CHCl₃)

Assuming only that the *sign* of the optical rotation is correctly predicted by theory, given the experimentally measured value of $+133.3^{\circ}$, the absolute configuration of **12e** must either be: (i) (*R*) at both chiral centers (and therefore *cis*); or (b) (*S*) at phenyl and (*R*) at methyl (*trans*). Scenario (b) is unlikely, given the wrong (opposite) directionality of the VCD signals in regions **C** and **D** of the experimental spectrum. Scenario (a) also gives rise to the best agreement between the predicted and measured VCD spectra.

The individual relative energies, free energies, and optical rotational signatures of each conformer of the cis and trans stereoisomers are separately provided in the accompanying Microsoft Excel files.

References:

¹ Pangborn, A. M.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Safe and Convenient Procedure for Solvent Purification. *Organometallics*. **1996**, *15*, 1518–1520.

² Pilgrim, B. S.; Gatland, A. E.; Esteves, C. H. A.; McTernan, C. T.; Jones, G. R.; Tatton, M. R.; Procopiou, P. A.; Donohoe, T. J. Palladium-Catalyzed Enolate Arylation as a Key C–C Bond-Forming Reaction for the Synthesis of Isoquinolines. *Org. Biomol. Chem.* **2016**, *14*, 1065–1090.

³ Allan, K. M.; Hong, B. D.; Stoltz, B. M. Expedient Synthesis of 3-Hydroxyisoquinolines and 2-Hydroxy-1,4-Napthoquinones *via* One-Pot Aryne Acyl-Alkylation/Condensation. *Org. Biomol. Chem.* **2009**, *7*, 4960–4964.

⁴ Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Design and Preparation of New Palladium Precatalysts for C–C and C–N Cross-Coupling Reactions. *Chem. Sci.* **2013**, *4*, 916–920.

⁵ Welin, E. R.; Ngamnithiporn, A.; Klatte, M.; Lapointe, G.; Pototschnig, G. M.; McDermott, M. S. J.; Conklin, D.; Gilmore, C. D.; Tadross, P. M.; Haley, C. K.; Negoro, K.; Glibstrup, E.; Grünanger, C. U.; Allan, K. M.; Virgil, S. C.; Slamon, D. J.; Stoltz, B. M. Concise Total Syntheses of (–)-Jorunnamycin A and (–)-Jorumycin Enabled by Asymmetric Catalysis. *Science*. **2019**, *363*, 270–275.

⁶ Legault, C. Y.; Charette, A. B. Catalytic Asymmetric Hydrogenation of *N*-Iminopyridinium Ylides: Expedient Approach to Enantioenriched Substituted Piperidine Derivatives. *J. Am. Chem. Soc.* **2005**, *127*, 8966–8967.

⁷ Xu, Z.; Xu, X.; O'Laoi, R.; Ma, H.; Zheng, J.; Chen, S.; Luo, L.; Hu, Z.; He, S.; Li, J.; Zhang, H.; Zhang, X. Design, Synthesis, and Evaluation of Novel Porcupine Inhibitors Featuring a Fused 3-Ring System Based on the "Reversed" Amide Scaffold. *Bioorg. Med. Chem.* **2016**, *24*, 5861–5872.

SI 72

SI 78

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) of **5a**.

¹⁹F NMR (282 MHz, CDCl₃) of **5a**.

¹⁹F NMR (282 MHz, CDCl₃) of **5b**.

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) of **5c**.

¹⁹F NMR (282 MHz, CDCl₃) of **5c**.

---78.33

¹⁹F NMR (282 MHz, CDCl₃) of **5d**.

¹H NMR (400 MHz, CDCl₃) of 6a.

¹H NMR (400 MHz, CDCl₃) of 6c.

SI 100

¹⁹F NMR (282 MHz, CDCl₃) of **6e**.

SI 102

---62.41

¹⁹F NMR (282 MHz, CDCl₃) of **6f**.

SI 106

¹⁹F NMR (282 MHz, CDCl₃) of **6i**.

¹H NMR (400 MHz, CDCl₃) of compound **6**l.

¹³C NMR (100 MHz, CDCl₃) of **6**l.

¹H NMR (400 MHz, CDCl₃) of compound **6n**.

¹³C NMR (100 MHz, CDCl₃) of **60**.

¹H NMR (400 MHz, CDCl₃) of compound 6p.

¹³C NMR (100 MHz, CDCl₃) of **6p**.

¹H NMR (400 MHz, CDCl₃) of compound **6r**.

Infrared spectrum (Thin Film, NaCl) of 6r.

845 845 775 775 749 775 749 749 749 749 750 749 750 749 750 750 750 750 750 750 750 750 750 750	
558 566 337 337 336 336 336 336 336 336 336 3	

-22.86

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) of 6r.

¹H NMR (400 MHz, CDCl₃) of compound S1a.

Infrared spectrum (Thin Film, NaCl) of S1a.

-22.72

¹³C NMR (100 MHz, CDCl₃) of S1a.

¹⁹F NMR (282 MHz, CDCl₃) of S1a.

¹⁹F NMR (282 MHz, CDCl₃) of **S1b**.

¹⁹F NMR (282 MHz, CDCl₃) of **S1c**.

¹H NMR (400 MHz, CDCl₃) of compound 7a.

 ^{13}C NMR (100 MHz, CDCl₃) of compound 7a.

 ^{13}C NMR (100 MHz, CDCl₃) of compound 7b.

 ^{13}C NMR (100 MHz, CDCl₃) of compound 7c.

¹³C NMR (100 MHz, CDCl₃) of compound **7d**.

¹⁹F NMR (282 MHz, CDCl₃) of 7e.

¹⁹F NMR (282 MHz, CDCl₃) of **7f**.

 ^{13}C NMR (100 MHz, CDCl₃) of compound 7g.

¹H NMR (400 MHz, CDCl₃) of compound **7h**.

SI 163

¹⁹F NMR (282 MHz, CDCl₃) of **7i**.

SI 167

¹³C NMR (100 MHz, CDCl₃) of compound **7k**.

¹³C NMR (100 MHz, CDCl₃) of compound **71**.

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3) of compound 7n.

¹H NMR (400 MHz, CDCl₃) of compound 70.

¹³C NMR (100 MHz, CDCl₃) of compound **70**.

81.5 61.5 54.2

S

¹H NMR (400 MHz, CDCl₃) of compound 7p.

¹³C NMR (100 MHz, CDCl₃) of compound **7p**.

¹H NMR (400 MHz, CDCl₃) of compound 7q.

Infrared spectrum (Thin Film, NaCl) of compound 7q.

¹³C NMR (100 MHz, CDCl₃) of compound 7q.

ET'S EE'Z

Ч С

 ^{13}C NMR (100 MHz, CDCl₃) of compound 7r.

170

SI 184

Infrared spectrum (Thin Film, NaCl) of compound 9b.

 $^{19}\mathrm{F}$ NMR (282 MHz, CDCl₃) of $\mathbf{9b}.$

¹⁹F NMR (282 MHz, CDCl₃) of **9c**.

¹³C NMR (100 MHz, CDCl₃) of compound **9d**.

¹³C NMR (100 MHz, CDCl₃) of compound **9e**.

¹³C NMR (100 MHz, CDCl₃) of compound **9f**.

¹H NMR (400 MHz, CDCl₃) of compound 11a.

¹³C NMR (100 MHz, CDCl₃) of compound **11a**.

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) of compound **11b**.

¹³C NMR (100 MHz, CDCl₃) of compound **11c**.

SI 205

SI 206

¹H NMR (400 MHz, CDCl₃) of compound **11f**.

¹³C NMR (100 MHz, CDCl₃) of compound **11f.**

¹H NMR (400 MHz, CDCl₃) of compound *Trans*-8a.

¹³C NMR (100 MHz, CDCl₃) of compound *Trans*-8a.

¹³C NMR (100 MHz, CDCl₃) of compound **8b**.

¹⁹F NMR (282 MHz, CDCl₃) of 8e.

SI 223

¹⁹F NMR (282 MHz, CDCl₃) of 8f.

ppm ¹³C NMR (100 MHz, CDCl₃) of compound 8g.

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl_3) of compound **8h**.

¹⁹F NMR (282 MHz, CDCl₃) of 8i.

¹H NMR (400 MHz, CDCl₃) of compound **8j**.

 ^{13}C NMR (100 MHz, CDCl_3) of compound $\boldsymbol{8k}.$

¹³C NMR (100 MHz, CDCl₃) of compound 8l.

¹³C NMR (100 MHz, CDCl₃) of compound **8m**.

SI 243

 ^{13}C NMR (100 MHz, CDCl₃) of compound 8r.

80

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) of compound 10a.

¹⁹F NMR (282 MHz, CDCl₃) of **10a**.

¹⁹F NMR (282 MHz, CDCl₃) of **10b**.

¹³C NMR (100 MHz, CDCl₃) of compound **10c**.

¹⁹F NMR (282 MHz, CDCl₃) of **10c**.

¹³C NMR (100 MHz, CDCl₃) of compound **10e**.

80

¹³C NMR (100 MHz, CDCl₃) of compound **10f**.

¹³C NMR (100 MHz, CDCl₃) of compound **12a**.

SI 267

¹³C NMR (100 MHz, CDCl₃) of compound **12b**.

.60

¹³C NMR (100 MHz, CDCl₃) of compound **12c**.

SI 273

ppm ^{13}C NMR (100 MHz, CDCl₃) of compound **13**.

¹³C NMR (100 MHz, CDCl₃) of compound 14.

SFC Traces of Racemic and Enantioenriched Compounds

Enantioenriched 8a•Cbz

Racemic 8b•Cbz

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.813	BV	0.0691	2070.81763	492.04037	49.2789
2	2.734	BB	0.0966	2131.41943	342.59348	50.7211

Enantioenriched 8b•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	1.808	BB	0.0670	1068.41528	244.38884	95.6879
2	2.726	BB	0.0959	48.14769	7.81482	4.3121

Racemic 8c•Cbz

Enantioenriched 8c•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.077	BB	0.1435	4781.52539	519.04926	95.7798
2	5.178	VB	0.1778	210.68056	18.09942	4.2202

Racemic 8d•Cbz

Enantioenriched 8d•Cbz

1	2.589 BH	0.0881	2843.16016	502.08252	94.1881
2	3.613 BH	0.1167	175.43710	23.59426	5.8119

Racemic 8e•Cbz

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	1.930	BV	0.0708	1849.34583	424.51587	49.3594
2	2.866	BB	0.1015	1897.34631	301.09756	50.6406

Enantioenriched 8e•Cbz

Racemic 8f•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	3.131	BV	0.0980	4470.82178	704.84247	48.8296
2	5.583	BB	0.1821	4685.14355	407.61465	51.1704

Enantioenriched 8f•Cbz

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	3.105	BB	0.0920	1656.91443	276.13840	95.9298
2	5.541	BB	0.1475	70.30067	7.09913	4.0702

Racemic 8g•Cbz

Enantioenriched 8g•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	2.027	MM	0.0761	329.72919	72.18623	91.0272
2	3.328	MM	0.1273	32.50227	4.25578	8.9728

Racemic 8h•Cbz

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.480	BB	0.0820	725.99445	136.52641	50.0536
2	3.262	BV	0.1073	724.44000	103.92244	49.9464

Enantioenriched 8h•Cbz

Racemic 8i•Cbz

Enantioenriched 8i•Cbz

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	1.666	BB	0.0609	1779.05176	461.77499	93.7135
2	2.202	BB	0.0729	119.34183	25.36208	6.2865
Racemic 8j•Cbz

Enantioenriched 8j•Cbz

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	3.612	BB	0.1254	4178.18115	521.86456	97.4007
2	5.805	BV	0.1948	111.50051	8.29716	2.5993

Racemic 8k•Cbz

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.961	VB	0.0674	1257.14734	285.41742	49.8960
2	3.045	BB	0.1042	1262.38831	188.33221	50.1040

Enantioenriched 8k•Cbz

00
95.9575
4.0425

Racemic 81•Cbz

#	[min]	11	[min]	[mAU*s]	[mAU]	8
1	2.289	BB	0.0811	2358.96533	450.59644	49.5114
2	2.939	BB	0.1037	2405.52295	361.37506	50.4886

Enantioenriched 81-Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.278	BB	0.0790	1102.16956	218.12439	94.1062
2	2.928	BB	0.0994	69.02821	10.96723	5.8938

Racemic 8m•Cbz

Enantioenriched 8m•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.908	 BV	0.1561	1272.85767	125.74207	74.5442
2	6.385	VB	0.1686	434.66418	39.41822	25.4558

Racemic 8n•Cbz

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.761	BV	0.0933	5567.44824	937.00757	53.7908
2	2.050	VB	0.0918	4782.73486	799.48718	46.2092

Enantioenriched 8n•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo -
1	1.523	BB	0.0540	2507.61743	731.10217	95.9818
2	1.821	BB	0.0641	104.97870	25.48206	4.0182

Racemic 80•Cbz

[min]		[min]	[mAU*s]	[mAU]	20
2.858	BB	0.0809	3854.20142	738.73291	48.5294
6.101	BB	0.1985	4087.78906	316.89798	51.4706
	[min] 2.858 6.101	[min] 2.858 BB 6.101 BB	[min] [min] 2.858 BB 0.0809 6.101 BB 0.1985	[min] [mAU*s] 2.858 BB 0.0809 3854.20142 6.101 BB 0.1985 4087.78906	[min] [mAU*s] [mAU] 2.858 BB 0.0809 3854.20142 738.73291 6.101 BB 0.1985 4087.78906 316.89798

Enantioenriched 80•Cbz

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.856	BB	0.0794	3073.72705	603.51361	95.1667
2	6.021	BB	0.1866	156.10904	12.59354	4.8333

Racemic 8p•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	3.200	BB	0.1065	981.89862	142.25697	49.4769
2	4.066	BB	0.1378	1002.66058	112.71777	50.5231

Enantioenriched 8p•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area
1	3.186	BB	0.1037	1020.52930	153.26720	94.3455
2	4.046	BB	0.1415	61.16384	6.76278	5.6545

Racemic 8q•Cbz

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.815	BB	0.0964	1416.28662	205.47318	50.0412
2	2.570	BB	0.1604	1413.95361	146.76917	49.9588

Enantioenriched 8q•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	1.841	MM	0.0872	76.67860	14.65488	6.5141
2	2.600	BB	0.1291	1100.44189	135.06032	93.4859

Racemic 8r•Cbz

Enantioenriched 8r•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	\$
1	2.524	MF	0.0937	706.70044	125.69700	92.3632
2	2.786	FM	0.1009	58.43125	9.65216	7.6368

Racemic 10a•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	2.543	BB	0.0891	2190.28516	392.62985	49.6934
2	3.025	BB	0.1008	2217.31665	336.81812	50.3066

Enantioenriched 10a•Cbz

#	[min]	11	[min]	[mAU*s]	[mAU]	90
1	2.557	BB	0.0848	1307.88232	235.36581	96.4332
2	3.039	BB	0.1029	48.37504	7.15398	3.5668

Racemic 10b•Cbz

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.941	BB	0.0632	2637.20605	652.49164	48.9944
2	2.439	BB	0.0835	2745.45801	504.47842	51.0056

Enantioenriched 10b•Cbz

Peak #	[min]	туре	width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.933	BB	0.1048	2717.86035	365.49832	96.9924
2	2.420	BB	0.1516	84.27748	7.58419	3.0076

Racemic 10c•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.899	BB	0.1183	2674.89038	361.63055	49.4474
2	4.436	BB	0.1364	2734.68140	317.63568	50.5526

Enantioenriched 10c•Cbz

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	3.929	BB	0.1179	1076.24158	139.70760	94.6188
2	4.462	BB	0.1424	61.20900	6.46822	5.3812

Racemic 10d•Cbz

Enantioenriched 10d•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	5.001	BB	0.1472	1013.64154	104.43392	79.2472
2	7.224	BB	0.2156	265.44623	18.70652	20.7528

Racemic 10e•Cbz

rear	Veritime	туре	WIUCH	ALEa	nerduc	ALEa
#	[min]		[min]	[mAU*s]	[mAU]	90
1	3.849	BB	0.1310	3464.39844	408.41620	49.5651
2	5.129	BB	0.1749	3525.19043	314.15067	50.4349

Enantioenriched 10e•Cbz

#	[min]	21	[min]	[mAU*s]	[mAU]	qo
1	3.894	BB	0.1232	984.75873	123.21400	77.0345
2	5.156	BB	0.1627	293.57529	27.45859	22.9655

Racemic 10f•Cbz

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.358	BB	0.1693	5294.22119	477.65454	49.7768
2	10.170	VB	0.3231	5341.70605	254.29431	50.2232

Enantioenriched 10f•Cbz

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.307	BB	0.1589	2883.06396	278.23975	91.1323
2	10.008	BV	0.3114	280.54007	13.55918	8.8677

Racemic 12a•Cbz

Enantioenriched 12a•Cbz

Racemic 12b•Cbz

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	4.836	MF	0.1369	7132.13086	868.20764	49.5579
2	5.268	FM	0.1484	7259.37549	815.35889	50.4421

Enantioenriched 12b•Cbz

Racemic 10c•Cbz

Enantioenriched 10c•Cbz

6.348 BB

1

2

Racemic 10d•Cbz

Enantioenriched 10d•Cbz

Racemic 12e•Cbz

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	2.148	BV	0.1044	5318.58984	771.45270	48.8723
2	2.602	VB	0.1204	5564.02832	702.45618	51.1277

Enantioenriched 12e•Cbz

