Copper-Catalyzed Enantioselective Allylic Alkylation with a γ-Butyrolactone-Derived Silyl Ketene Acetal.

Carina I. Jette,¹ Z. Jaron Tong,² Ryan G. Hadt,^{2*} and Brian M. Stoltz^{1*}

¹Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, ²Arthur Amos Noyes Laboratory of Chemical Physics,

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

> stoltz@caltech.edu rghadt@caltech.edu

Table of Contents

Materials and Methods	S3
List of Abbreviations	S5
Commercial Ligand Screening:	S6
Additional Picolinamide Ligand Screening	
Synthesis of Chiral Picolinamide Ligands	
Additional Screening	
Synthesis of Allylic Chloride Electrophiles	
Procedure for Cu-Catalyzed Allylic Alkylation Reactions	
Spectroscopic Data for Products from Catalytic Reactions	S33
Procedures and Spectroscopic Data for Product Transformations	
Supporting Computational Results	
References	S55

SFC traces	
Synthetic Utility of α-Allyl γ-Butyrolactones	
NMR and IR Spectra of New Compounds	S77
Crystal Structure Data for <i>3b</i>	S186
Coordinates for Optimized Geometries	S194
¹ HNMR Spectrum of CuCl ₂ /L8 + 2	

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon. Reaction progress was monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS. TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO₄ staining. ((4,5dihydrofuran-2-yl)oxy)trimethylsilane (2) was synthesized according to a previously reported procedure.¹ Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40-63 nm) was used for flash chromatography. ¹H NMR spectra were recorded on a Bruker Avance HD 400 MHz or Varian Mercury 300 MHz spectrometers and are reported relative to residual CHCl₃ (δ 7.26 ppm). ¹³C NMR spectra were recorded on a Bruker Avance HD 400 MHz spectrometer (101 MHz) and are reported relative to residual CHCl₃ (δ 77.16 ppm). ¹⁹F NMR spectra were recorded on a Varian Mercury 300 MHz spectrometer (282 MHz). Data for ¹H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet, app = apparent. Data for ${}^{13}C$ NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained using a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm^{-1}) . Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm pathlength cell and are reported as: $\left[\alpha\right]_{D}^{T}$ (concentration in 10 mg/1 mL, solvent). Analytical SFC was performed with a Mettler SFC supercritical CO2 analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd.. High resolution mass spectra (HRMS) wereobtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+), or obtained from Caltech mass spectrometry laboratory. X-Band (9.4 GHz) Continuous-wave(CW) EPR spectra were obtained using a Bruker EMX spectrometer with its Bruker Win-EPR software (version 3.0). A vacuum-insulated quartz liquid nitrogen dewar was inserted into the EPR resonator to obtain all spectra at 77 K. For optimal sensitivity, all spectra were collected with 0.5 mW microwave power and averaged over four scans. UV-Vis-NIR spectra were acquired using Varian Cary 500 Scan spectrophotometer with Varian Cary WinUV software(version 4.10(464)). Samples were loaded into 1 cm Starna Cell borosilicate cuvettes enclosed with screw caps. The spectra were collected from 300 nm to 1650 nm at a 600 nm/min scan rate and corrected for THF background. IR spectra were collected using a Bruker Alpha Platinum ATR spectrometer with OPUS software (version 7.0.129) stored in a glovebox under N₂. An aliquot of sample solution was deposted onto the spectrometer to form a thin film, and the spectra were collected over 32 scans

All calculations were performed using the ORCA 4.1.2 package.² Unless otherwise specified, the spectroscopically calibrated Becke3-Lee-Yang-Parr density functional with 38% exact Hartree-Fock exchange (B3(38HF)LYP was employed, similar to that reported by Solomon and coworkers.³ All atoms were described with the def2-TZVP basis set. Calculations were performed with the finest available grid (Grid7) and the chain of sphere approximation (RIJCOSX) for two-electron integrals on the corresponding finest auxiliary integration grid (GRIDX9) for the RI/J auxiliary basis set. Gas-phase geometries were optimized with tight convergence criteria ($\Delta E \le 1*10^{-8}$ Hartree). Frequency calculations were used to confirm optimized structures represented local minima on the potential energy surfaces. To approximate solvent effects, single point energy calculations were performed on gas-phase optimized geometries using a conductor-like polarizable continuum model for THF. In all cases, counter ions were excluded from calculations.

For crystal structure determination of **3b** A crystal was mounted on a polyimide MiTeGen loop with STP Oil Treatment and placed under a nitrogen stream. Low temperature (200K; there were crystal issues at lower temperatures) X-ray data were collected with a Bruker AXS D8 VENTURE KAPPA diffractometer running at 50 kV and 1mA (Cu $K_a = 1.54178$ Å; PHOTON II CPAD detector and Helios focusing multilayer mirror optics). All diffractometer manipulations, including data collection, integration, and scaling were carried out using the Bruker APEX3 software. An absorption correction was

applied using TWINABS. The space group was determined and the structure solved by intrinsic phasing using XT. Refinement was full-matrix least squares on F^2 using XL. All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were placed in idealized positions and refined using a riding model. The water molecule was refined as a rigid body. The isotropic displacement parameters of all hydrogen atoms were fixed at 1.2 times (1.5 times for methyl groups) the U_{eq} value of the bonded atom.

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa Aesar and used as received unless otherwise stated.

List of Abbreviations

ee – enantiomeric excess, SFC – supercritical fluid chromatography, TLC – thin-layer chromatography, IPA – isopropanol, MTBE – methyl *tert*-butyl ether, PE – petroleum ether, DMAP – 4-dimethylaminopyridine, EtOAc – ethyl acetate, LiHMDS – lithium bis(trimethylsilyl)amide, NaHMDS – sodium bis(trimethylsilyl)amide, KHMDS – pottassium bis(trimethylsilyl)amide, THF – tetrahydrofuran, TMEDA – 1,2-tetramethylethylenediamine.

Commercial Ligand Screening:

Procedure for Evaluating Commercially Available Ligands in Cu-Catalyzed Enantioselective Allylic Alkylation:

n = the number of reactions in the screen. In the glovebox, $[Cu(MeCN)_4]PF_6$ (2.33n mg, 0.00625n mmol, 0.1 equiv), THF (0.6n mL), and a stir bar were added to a 4-mL vial A. The solution was stirred until the Cu had fully dissolved. In a separate 4-mL vial B was added the appropriate ligand (0.0075 mmol, 0.12 equiv), and Cs₂CO₃ (20 mg, 0.0625

mmol, 1.0 equiv) or CsOAc (19.2 mg, 0.1 mmol, 1 equiv) and a stir bar. The contents of vial A (0.6 mL) was then added to vial B, and allowed to stir for 20 min. ((4,5-dihydrofuran-2-yl)oxy)trimethylsilane (44 mg, 0.25 mmol, 2.0 equiv) was added to the vial, and the reaction was allowed to stir for 10 min. (*E*)-diethyl (5-phenylpent-2-en-1-yl) phosphate (18.65 mg, 0.0625 mmol, 1.0 equiv) was then added to the reaction, and the reaction was allowed to stir for 14 hours at room temperature The reaction mixture was filtered through a short silica plug eluting with ethyl acetate (5 mL). The eluate was concentrated by rotary evaporator and dissolved in CD_2Cl_2 to determine ¹H NMR yield with respect to 1,3,5-trimethoxybenzene. Then, the sample was concentrated and purified by preparative TLC (30% EtOAc/hexanes). The purified product was then dissolved in hexanes for SFC analysis on a Chiralcel AD column (12% IPA/hexanes, 2.5 mL/min).

Additional Picolinamide Ligand Screening:^a

(a.) Conditions: 0.1 mmol scale. Yield determined by ¹HNMR analysis of the crude reaction mixture using 1,3,5–trimethoxybenzene as a standard. Enantiomeric Excess determined by chiral SFC analysis of isolated product. (b) only 12 mol% n–BuLi used. (c). no base added.

Methods for formation of Cu/L complex:

n = the number of reactions in the screen.

Method A:

To a flame-dried 4 mL vial charged with Ar and a stir bar was added the desired Ligand (0.012n mmol, 0.12 equiv) and THF (0.53n mL). The solution was cooled to -78 °C and *n*–BuLi (174n µL, 0.024n mmol, 0.138 M in THF, 0.24 equiv) was added dropwise. The reaction was stirred for 1 h at -78 °C. A solution of [Cu(MeCN)₄]PF₆ (3.73n mg, 0.01n mmol, 0.10 equiv) in THF was added, and the reaction was warmed to room temperature and stirred for 1 h.

Method B:

To a flame-dried 4 mL vial charged with Ar and a stir bar was added the desired Ligand (0.012n mmol, 0.12 equiv) and THF (0.63n mL). The solution was cooled to -78 °C and *n*-BuLi (174n mL, 0.024n mmol, 0.138M in THF, 0.24 equiv) was added dropwise. The reaction was stirred for 1 h at -78 °C, and then the cold solution was transferred to a flame-dried vial under Ar containing CuCl₂ (1.34n mg, 0.01n mmol, 0.1 equiv). The resulting mixture was then warmed to room temperature.

Method C:

To a 4 mL vial containing $CuCl_2$ (1.34n mg, 0.01n mmol, 0.1 equiv) in the glovebox was added a solution of the Ligand (0.012n mmol, 0.12 equiv) in THF (0.4n mL), followed by a solution of LiHMDS (4.35n mg, 0.026n mmol, 0.26 equiv) in THF (0.4n mL). The resulting solution was stirred for 1 h at room temperature.

Procedure for Evaluating Picolinamide Ligands in Cu-catalyzed Enantioselective Allylic Alkylation:

In the glovebox, CsOAc (19.2 mg, 0.1 mmol, 1.0 equiv) was added to a 4 mL vial containing a stir bar. The Cu/L complex in THF made using either Method A, B, or C (see above) was then added (0.8 mL) to the CsOAc followed immediately by the silyl ketene acetal **2** (28 mg, 0.15 mmol, 1.5 equiv) in THF (0.8 mL). The resulting solution was allowed to stir for 5 min and then cinnamyl chloride **1a** (15.3 mg, 0.1 mmol, 1.0 equiv) in THF (0.8 mL) was added, and the reaction was allowed to stir for 14 hours at room temperature. The reaction mixture was filtered through a short silica plug eluting with ethyl acetate (10 mL). The eluate was concentrated by rotary evaporator and dissolved in CD₂Cl₂ to determine ¹H NMR yield with respect to 1,3,5-trimethoxybenzene. Then, the sample was concentrated and purified by preparative TLC (30% EtOAc/hexanes). The purified product was then dissolved in diethyl ether for SFC analysis on a Chiralpak AD column (12% IPA/hexanes, 2.5 mL/min).

Synthesis of Chiral Picolinamide Ligands

Preparation of Known Ligands: Previously reported methods were used to prepare L2⁴, L5⁵, L6⁶, L13⁷, L14⁸, L15⁹.

Synthesis of (1*S*,2*S*)-2-(picolinamido)cyclohexyl benzoate (L4):

To a solution of picolinic acid (616 mg, 5.0 mmol, 1.1 equiv) in THF (12 mL) was added carbonyl diimidazole (811 mg, 5.0 mmol, 1.1 equiv). The resultant mixture was allowed to stir for 1 h at room temperature, or until the solution turned clear. The solution was then diluted with THF (84 mL) and added slowly to a solution of (1*S*,2*S*)-2-aminocyclohexan-1-ol (576 mg, 5.0 mmol, 1.0 equiv) in THF (100 mL) via a dropping funnel. The reaction was allowed to stir at room temperature overnight. The crude reaction mixture was then concentrated by rotary evaporator and purified by short silica plug (2% MeOH in EtOAc) to afford **SI1** (925 mg, 4.2 mmol, 84% yield).

To a solution of benzoic acid (269 mg, 2.2 mmol, 1.1 equiv) in THF (6.1 mL) was added carbonyl diimidazole (357 mg, 2.2 mmol, 1.1 equiv). The resultant mixture was allowed to stir for 1 h at room temperature, or until the solution turned clear. N-((1S,2S)-2hydroxycyclohexyl)picolinamide (SI1, 414 mg, 2.0 mmol, 1.0 equiv) was added, and the reaction was allowed to stir overnight. The reaction mixture was diluted with water and allowed to stir for 1 h. The aqueous layer was extracted with methylene chloride three times, and the resulting organic layers were dried over Na₂SO₄ and concentrated. Product L4 was purified by column chromatography to provide a white solid (189 mg, 0.59 mmol 30% yield); $[\alpha]_{D}^{25} - 92.02$ (c 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.48 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.16 – 8.07 (m, 2H), 8.01 – 7.94 (m, 2H), 7.75 (td, J = 7.7, 1.7 Hz, 1H), 7.50 - 7.44 (m, 1H), 7.39 - 7.30 (m, 3H), 5.01 (td, J = 10.4, 4.4 Hz, 1H), 4.31 (dddd, J = 13.8, 9.6, 7.4, 4.5 Hz, 1H), 2.28 - 2.13 (m, 2H), 1.90 - 1.72 (m, 2H), 1.68 - 1.57 (m, 1H), 1.55 – 1.36 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 164.1, 149.8, 148.1, 137.3, 132.9, 130.4, 129.8, 128.3, 126.1, 122.2, 75.7, 52.1, 32.1, 31.2, 24.5, 24.2; IR (Neat Film, NaCl) 3345, 2938, 2860, 1710, 1671, 1568, 1522, 1450, 1319, 1272, 1114, 1027, 997, 749, 713 cm⁻¹; HRMS (MM) m/z calc'd for C₁₉H₂₁N₂O₃ [M+H]⁺: 325.1547, found 325.1553;

N-((1*S*,2*S*)-2-(dimethylamino)cyclohexyl)picolinamide (L12): To a solution of picolinic acid (308 mg, 2.5 mmol, 1.25 equiv) in THF (3.33 mL) was added carbonyl diimidazole S10

(389 mg, 2.5 mmol, 1.2 equiv). The resultant mixture was allowed to stir for 1 h at room temperature, or until the solution turned clear. $(1S,2S)-N^1,N^1$ -dimethylcyclohexane-1,2-diamine (285 mg, 2.0 mmol, 1.0 equiv) was added, and the reaction was stirred overnight. The reaction mixture was diluted with water and allowed to stir for 1 h. The aqueous layer was extracted with methylene chloride three times, and the resulting organic layers were dried over Na₂SO₄ and concentrated. Product **L12** was purified by column chromatography to provide a white solid (247 mg, 1.0 mmol, 50% yield); $[\alpha]_D^{25}$ 74.79 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.56 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 1H), 8.29 (s, 1H), 8.18 (dt, *J* = 7.8, 1.1 Hz, 1H), 7.81 (td, *J* = 7.7, 1.8 Hz, 1H), 7.39 (ddd, *J* = 7.5, 4.8, 1.2 Hz, 1H), 3.80 (tdd, *J* = 10.7, 6.6, 4.0 Hz, 1H), 2.47 (dddd, *J* = 11.7, 9.8, 7.3, 3.9 Hz, 2H), 2.26 (s, 6H), 1.96 – 1.77 (m, 2H), 1.70 (dtd, *J* = 13.0, 3.3, 1.8 Hz, 1H), 1.45 – 1.12 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 164.3, 150.7, 148.2, 137.3, 125.9, 122.2, 66.6, 51.0, 40.3, 33.0, 25.4, 25.0, 22.2; IR (Neat Film, NaCl) 3376, 2930, 2859, 2824, 2779, 1672, 1590, 1568, 1509, 1464, 1432, 1339, 1270, 1189, 1153, 1084, 1044, 1032, 997, 866, 844, 782, 750, 700, 671, 620 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₄H₂₂N₃O [M+H]⁺: 248.1757, found 248.1753.

(1*S*,2*S*)-cyclohexane-1,2-diyl dipicolinate (L16): To a solution of picolinic acid (345 mg, 2.8 mmol, 2.5 equiv) in THF (1.87 mL) was added carbonyl diimidazole (435 mg, 2.68 mmol, 2.4 equiv). The resultant mixture was allowed to stir for 1 h at room temperature, or until the solution turned clear. (1*S*,2*S*)-cyclohexane-1,2-diol (130 mg, 1.12 mmol, 1.0 equiv) was added, and the reaction was allowed to stir overnight. The reaction mixture was diluted with water and stirred for 1 h. The aqueous layer was extracted with methylene chloride three times, and the resulting organic layers were dried over Na₂SO₄ and concentrated. Product L16 was purified by column chromatography to provide a white solid (189 mg, 0.58 mmol, 52% yield); $[\alpha]_D^{25}$ –78.88 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.69 (ddd, *J* = 4.7, 1.7, 0.9 Hz, 2H), 8.00 (dt, *J* = 7.9, 1.1 Hz, 2H), 7.74 (td, *J* = 7.8, 1.8 Hz, 2H), 7.38 (ddd, *J* = 7.6, 4.7, 1.2 Hz, 2H), 5.45 – 5.27 (m, 2H), 2.35 – 2.25 (m,

2H), 1.93 - 1.78 (m, 2H), 1.75 - 1.56 (m, 2H), 1.58 - 1.39 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.3, 150.1, 147.9, 137.1, 126.9, 125.2, 75.4, 30.5, 23.8; IR (Neat Film, NaCl) 2940, 2868, 1740, 1716, 1582, 1437, 1325, 1304, 1280, 1224, 1157, 1128, 1087, 1045, 1028, 992, 918, 845, 821, 747, 706, 674, 664, 619 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₈H₁₉N₂O₄ [M+H]⁺:327.1339, found 327.1346.

N-((1*S*,2*S*)-2-aminocyclohexyl)picolinamide (SI2): To a solution of picolinic acid (1.23) g, 10.0 mmol, 1.0 equiv) in THF (25 mL) was added carbonyl diimidazole (1.62 g, 10.0 mmol, 1.0 equiv). The resultant mixture was stirred for 1 h at room temperature. The reaction was then diluted with THF (170 mL) and added slowly to a solution of (1S,2S)cyclohexane-1,2-diamine (1.14 g, 10.0 mmol, 1.0 equiv) in THF (200 mL) via a dropping funnel. The reaction was allowed to stir at room temperature overnight. The crude reaction mixture was then concentrated by rotary evaporator and purified by column chromatography(3:1 ethyl acetate: MeOH to flush out imidazole, then 1% Et₃N to solvent mixture to elute product) to afford SI2 (1.36 g, 6.2 mmol, 62% yield); $\left[\alpha\right]_{D}^{25}$ 136.06 (c 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) 8.55 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.20 (dt, J = 7.8, 1.1 Hz, 1H), 7.97 (d, J = 9.4 Hz, 1H), 7.85 (td, J = 7.7, 1.7 Hz, 1H), 7.42 (ddd, J = 7.7, 1.7 7.6, 4.8, 1.2 Hz, 1H), 3.72 (dtd, J = 11.0, 9.6, 4.0 Hz, 1H), 2.60 – 2.52 (m, 1H), 2.04 (ddt, J = 12.7, 9.3, 3.1 Hz, 2H), 1.77 (dq, J = 9.1, 2.5 Hz, 2H), 1.66 (s, 2H), 1.47 – 1.16 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 164.6, 150.0, 148.1, 137.5, 126.3, 122.5, 56.5, 55.8, 35.3, 32.6, 25.3; IR (Neat Film, NaCl) 3341, 3312, 2929, 2858, 1700, 1590, 1568, 1520, 1448, 1434, 1465, 1326, 1288, 1252, 1147, 1162, 1089, 1027, 997, 923, 906, 853, 821, 753, 692, 680, 620 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₂H₁₈N₃O [M+H]⁺: 220.1444, found 220.1434.

N-((1*S*,2*S*)-2-(((*E*)-benzylidene)amino)cyclohexyl)picolinamide (L3): To a solution of SI2 (219 mg, 1.0 mmol, 1.0 equiv) in MeOH (5 mL) at 0°C was added benzaldehyde (112 uL, 1.1 mmoL, 1.1 equiv) in MeOH (5 mL) dropwise. The resulting mixture was warmed to room temperature, and concentrated by rotary evaporator and high-vac to afford L3 (257 mg, 0.83 mmol, 83% yield); $[\alpha]_{D}^{25}$ 128.30 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.44 (ddd, *J* = 4.7, 1.7, 0.9 Hz, 1H), 8.29 (s, 1H), 8.09 (dt, *J* = 7.8, 1.1 Hz, 1H), 7.92 – 7.83 (m, 1H), 7.73 (td, *J* = 7.7, 1.7 Hz, 1H), 7.67 – 7.61 (m, 2H), 7.36 – 7.28 (m, 4H), 4.19 (dtd, *J* = 10.4, 9.1, 4.1 Hz, 1H), 3.27 (td, *J* = 9.6, 5.0 Hz, 1H), 2.31 – 2.17 (m, 1H), 1.93 – 1.72 (m, 4H), 1.61 – 1.32 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.6, 160.3, 150.2, 147.9, 137.3, 136.4, 130.5, 128.5, 128.3, 126.0, 122.3, 53.2, 33.5, 31.7, 24.9, 24.3; IR (Neat Film, NaCl) 3379, 2932, 2855, 2673, 1643, 1590, 1568, 1519, 1464, 1450, 1434, 1293, 1156, 1042, 998, 752, 695, 680 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₉H₂₂N₃O₂ [M+H]⁺: 308.1757, found 308.1768.

General Procedure 1: Synthesis of Cyclohexylpicolinamide Ligands

N-((1*S*,2*S*)-2-pivalamidocyclohexyl)picolinamide (L7): To a solution of pivalic acid (56.2 mg, 0.55 mmol, 1.1 equiv) in THF (1.0 mL) was added carbonyl diimidazole (89.2 mg, 0.55 mmol, 1.1 equiv). The resultant mixture was stirred for 1 h at room temperature. *N*-((1*S*,2*S*)-2-aminocyclohexyl)picolinamide (SI2, 110 mg, 0.5 mmol, 1.0 equiv) was added, and the reaction was allowed to stir overnight. The reaction mixture was then

diluted with water and allowed to stir for 1 h. The aqueous layer was extracted with methylene chloride three times, and the resulting organic layers were dried over Na₂SO₄ and concentrated. The product was purified by column chromatography to provide a white solid (82.2 mg, 0.27 mmol, 54% yield); $[\alpha]_D^{25}$ 36.82 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.54 (ddd, *J* = 4.7, 1.7, 0.9 Hz, 1H), 8.14 (dt, *J* = 7.8, 1.1 Hz, 1H), 8.08 (d, *J* = 9.0 Hz, 1H), 7.82 (td, *J* = 7.7, 1.7 Hz, 1H), 7.41 (ddd, *J* = 7.6, 4.7, 1.2 Hz, 1H), 6.36 (d, *J* = 7.6 Hz, 1H), 3.93 (tdd, *J* = 11.3, 9.0, 4.0 Hz, 1H), 3.73 (tdd, *J* = 11.2, 7.6, 4.0 Hz, 1H), 2.18 – 2.04 (m, 2H), 1.86 – 1.71 (m, 2H), 1.54 – 1.34 (m, 3H), 1.29 – 1.15 (m, 1H), 1.01 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 178.7, 165.2, 149.5, 148.4, 137.4, 126.4, 122.2, 55.0, 52.5, 38.6, 32.7, 32.4, 27.5, 25.2, 24.7; IR (Neat Film, NaCl) 3354, 2935, 2858,1740, 1715, 1655, 1590, 1570, 1525, 1434, 1398, 1364, 1322, 1289, 1244, 1202, 1129, 1087, 1044, 997, 820, 750, 692, 620 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₇H₂₆N₃O₂ [M+H]⁺: 304.2020, found 304.2008.

N-((1*S*,2*S*)-2-(4-methoxybenzamido)cyclohexyl)picolinamide (L17): Product L17 was prepared according to the general procedure 1 and 4-methoxybenzaldehyde and **SI2**. The product was purified by column chromatography to provide a white solid (106 mg, 0.3 mmol, 60% yield); $[\alpha]_D^{25}$ 120.32 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.52 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.20 – 8.06 (m, 2H), 7.79 (td, J = 7.7, 1.7 Hz, 1H), 7.76 – 7.70 (m, 2H), 7.39 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 7.18 (d, J = 7.1 Hz, 1H), 6.90 – 6.81 (m, 2H), 4.05 (tdd, J = 11.5, 8.8, 4.1 Hz, 1H), 3.89 (tdd, J = 10.9, 7.1, 4.0 Hz, 1H), 3.80 (s, 3H), 2.37 (dq, J = 12.6, 2.3 Hz, 1H), 2.16 – 2.07 (m, 1H), 1.92 – 1.74 (m, 2H), 1.57 (qd, J = 12.4, 3.7 Hz, 1H), 1.44 (ddt, J = 12.2, 9.9, 3.2 Hz, 2H), 1.37 – 1.21 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 165.8, 162.0, 149.4, 148.3, 137.5, 128.9, 126.9, 126.5, 122.3, 113.7, 56.5, 55.5, 52.4, 32.7, 32.3, 25.2, 24.6; IR (Neat Film, NaCl) 3316, 2933, 2856, 1656, 1607, 1569, 1507, 1527, 1465, 1330, 1302, 1255, 1178, 1146, 1109, 1092, 1028, 10.55 (10.55, 150.5, 150.5) (10.55, 150.7, 1527, 1465, 1330, 1302, 1255, 1178, 1146, 1109, 1092, 1028, 10.55 (10.55, 150.5) (10.55, 150.7, 1527, 1465, 1330, 1302, 1255, 1178, 1146, 1109, 1092, 1028, 10.55 (10.55, 150.5) (10.55, 150.7, 1527, 1465, 1330, 1302, 1255, 1178, 1146, 1109, 1092, 1028, 10.55 (10.55, 150.5) (10.55, 150.7, 1527, 1465, 1330, 1302, 1255, 1178, 1146, 1109, 1092, 1028, 10.55 (10.55, 150.7, 1527, 1465, 1330, 1302, 1255, 1178, 1146, 1109, 1092, 1028, 10.55 (10.55, 150.7,

997, 843, 820, 750, 620; HRMS (MM) m/z calc'd for C₂₀H₂₄N₃O₃ [M+H]⁺: 354.1812, found 354.1820.

N-((1*S*,2*S*)-2-(3,5-di-*tert*-butylbenzamido)cyclohexyl)picolinamide (L18): Product L18 was prepared according to General Procedure 1 from SI2 and 3,5-di-*tert*-butylbenzoic acid. The product was purified by column chromatography to provide a white solid (66.7 mg, 0.15 mmol, 31% yield); $[\alpha]_D^{25}$ 37.12 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.53 (ddd, *J* = 4.7, 1.7, 0.9 Hz, 1H), 8.23 – 8.15 (m, 2H), 7.80 (td, *J* = 7.7, 1.7 Hz, 1H), 7.62 (d, *J* = 1.8 Hz, 2H), 7.48 (t, *J* = 1.8 Hz, 1H), 7.39 (ddd, *J* = 7.6, 4.8, 1.2 Hz, 1H), 7.29 (d, *J* = 7.1 Hz, 1H), 4.07 (dddd, *J* = 11.7, 10.8, 8.8, 4.0 Hz, 1H), 3.89 (tdd, *J* = 10.9, 7.1, 4.0 Hz, 1H), 2.42 (ddt, *J* = 12.1, 4.9, 2.6 Hz, 1H), 2.12 (ddp, *J* = 12.4, 5.2, 2.6, 2.0 Hz, 1H), 1.93 – 1.73 (m, 2H), 1.59 (qd, *J* = 12.4, 3.7 Hz, 1H), 1.45 (ddt, *J* = 17.1, 11.8, 6.1 Hz, 2H), 1.32 (s, 19H); ¹³C NMR (101 MHz, CDCl₃) δ 168.1, 165.6, 151.1, 149.4, 148.3, 137.3, 134.0, 126.5, 125.2, 122.4, 121.5, 56.7, 52.3, 35.1, 32.6, 32.4, 31.5, 25.3, 24.6; IR (Neat Film, NaCl) 3312, 2951, 2862, 1654, 1593, 1569, 1526, 1464, 1434, 1393, 1334, 1264, 1249, 1147, 1097, 998, 888, 820, 750, 706, 612 cm⁻¹; HRMS (MM) *m/z* calc'd for C₂₇H₃₈N₃O₂ [M+H]⁺: 436.2959, found 436.2939.

N-((1*S*,2*S*)-2-(3-methylbenzamido)cyclohexyl)picolinamide (L19): Product L19 was prepared according to General Procedure 1 from SI2 and 3-methylbenzoic acid. The product was purified by column chromatography to provide a white solid (94.2 mg, 76% yield); $[\alpha]_D^{25}$ 75.30 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.52 (ddd, *J* = 4.8, 1.8,

0.9 Hz, 1H), 8.18 (d, J = 8.8 Hz, 1H), 8.13 (dt, J = 7.8, 1.1 Hz, 1H), 7.79 (td, J = 7.7, 1.7 Hz, 1H), 7.56 (dp, J = 1.6, 0.7 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.39 (ddd, J = 7.6, 4.8, 1.3 Hz, 1H), 7.25 – 7.15 (m, 3H), 4.12 – 4.01 (m, 1H), 3.92 (tdd, J = 11.0, 7.3, 4.0 Hz, 1H), 2.40 – 2.30 (m, 4H), 2.13 (ddt, J = 12.8, 4.1, 2.7 Hz, 1H), 1.92 – 1.76 (m, 2H), 1.64 – 1.49 (m, 1H), 1.48 – 1.40 (m, 2H), 1.39 – 1.23 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 165.7, 149.4, 148.4, 138.2, 137.4, 134.5, 132.0, 128.4, 128.0, 126.5, 124.1, 122.3, 56.3, 52.5, 32.6, 32.3, 25.2, 24.6, 21.5; IR (Neat Film, NaCl) 3304, 3055, 2933, 2857, 1655, 1641, 1606, 1587, 1528, 1485, 1464, 1434, 1328, 1289, 1250, 1216, 1145, 1093, 1043, 998, 936, 816, 746, 688, 665, 620 cm⁻¹; HRMS (MM) *m/z* calc'd for C₂₃H₂₄N₃O₂ [M+H]⁺: 338.1863, found 338.1851.

N-((11*S*,12*S*)-12-amino-9,10-dihydro-9,10-ethanoanthracen-11-yl)benzamide (SI3): To a solution of benzoic acid (1.04 g, 8.5 mmol) in THF (21 mL) was added carbonyl diimidazole (1.38 g, 8.5 mmol). The resultant mixture was allowed to stir for 1 h at room temperature, or until the solution turned clear. The solution was then diluted with THF (142 mL) and added slowly to a solution of (11*S*,12*S*)-9,10-dihydro-9,10-ethanoanthracene-11,12-diamine (1.14 g, 10.0 mmol) in THF (170 mL) via a dropping funnel. The reaction was allowed to stir at room temperature overnight. The crude reaction mixture was then concentrated by rotary evaporator and purified by column chromatography (9:1 ethyl acetate: MeOH) to afford **SI3** (1.7 g, 5.1 mmol, 60% yield, coeluted with imidazole, used without further purification); $[\alpha]_D^{25} 30.33$ (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.56 (m, 2H), 7.49 – 7.45 (m, 1H), 7.41 – 7.34 (m, 6H), 7.23 – 7.17 (m, 4H), 5.82 (d, *J* = 7.7 Hz, 1H), 4.98 (s, 2H), 4.35 (s, 1H), 4.23 (s, 1H), 3.96 (d, *J* = 7.9 Hz, 1H), 2.97 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.7, 142.4, 140.3, 139.2, 138.7, 134.2, 131.8, 128.8, 127.2, 126.9, 126.7, 126.4, 125.3, 124.9, 124.8, 61.1, 60.2, 52.1, 49.1; IR (Neat Film, NaCl) 3119, 2922, 2838, 2697, 2608, 1960, 1918, 1826, 1638, 1602, 1578, 1542, 1535, 1485, 1466, 1445, 1379, 1326, 1294, 1256, 1228, 1141, 1116, 1095, 1063, 1026, 1000, 931, 866, 826, 751, 720, 664 cm⁻¹; HRMS (MM) *m/z* calc'd for $C_{23}H_{21}N_2O [M+H]^+$: 341.1648, found 341.1649.

General Procedure 2: Synthesis of ANDEN Picolinyl Ligands.

N-((11S,12S)-12-benzamido-9,10-dihydro-9,10-ethanoanthracen-11-yl)picolinamide (L8): To a solution of picolinic acid (378 mg, 3.07 mmol) in THF (4.65 mL) was added carbonyl diimidazole (498 mg, 3.07 mmol). The resultant mixture was stirred for 1 h at N-((11S,12S)-12-amino-9,10-dihydro-9,10-ethanoanthracen-11room temperature. yl)benzamide (SI3, 950 mg, 2.79 mmol) was added, and the reaction was allowed to stir overnight. The reaction mixture was then diluted with water and allowed to stir for 1 h. The aqueous layer was extracted with methylene chloride three times, and the resulting organic layers were dried over Na₂SO₄ and concentrated. Product L8 was purified by column chromatography to provide a white solid (747 mg, 1.68 mmol, 60% yield); $\left[\alpha\right]_{D}^{25}$ 174.63 (c 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.06 (dt, J = 7.8, 1.1 Hz, 1H), 7.92 (d, J = 8.7 Hz, 1H), 7.78 (td, J = 7.7, 1.7 Hz, 1H), 7.62 -7.57 (m, 2H), 7.51 - 7.39 (m, 3H), 7.39 - 7.30 (m, 5H), 7.25 - 7.14 (m, 4H), 6.10 (d, J =7.7 Hz, 1H), 4.63 (d, J = 2.6 Hz, 1H), 4.49 (d, J = 2.6 Hz, 1H), 4.36 – 4.29 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 164.2, 149.3, 148.2, 141.2, 139.2, 138.7, 137.3, 134.3, 131.7, 128.6, 127.11, 127.07, 127.07, 127.01, 126.97, 126.91, 126.4, 126.0, 125.9, 125.1, 124.9, 122.3, 57.8, 56.9, 49.6, 49.4; IR (Neat Film, NaCl) 3360, 3006, 1652, 1569, 1517, 1489, 1465, 1434, 1327, 1293, 1146, 998, 748, 716 cm⁻¹; HRMS (MM) *m/z* calc'd for $C_{29}H_{24}N_{3}O_{2}[M+H]^{+}$: 446.1863, found 446.1882.

N-((11S,12S)-12-benzamido-9,10-dihydro-9,10-ethanoanthracen-11-yl)-4-

(trifluoromethyl)picolinamide (L9): Product L9 was prepared according to general procedure 2 from SI3 and 4-(Trifluoromethyl)pyridine-2-carboxylic acid . The product was purified by column chromatography to provide a white solid (107.1 mg, 0.21 mmol, 42% yield); $[\alpha]_D^{25}$ 143.66 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.62 (dt, *J* = 5.0, 0.8 Hz, 1H), 8.28 (dt, *J* = 1.6, 0.7 Hz, 1H), 7.84 (d, *J* = 8.7 Hz, 1H), 7.62 – 7.56 (m, 3H), 7.51 – 7.40 (m, 3H), 7.38 – 7.30 (m, 4H), 7.29 – 7.15 (m, 4H), 6.13 (d, *J* = 7.9 Hz, 1H), 4.60 (d, *J* = 2.6 Hz, 1H), 4.49 (d, *J* = 2.6 Hz, 1H), 4.39 – 4.32 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 162.8, 150.8, 149.3, 141.1, 139.9 (q, *J* = 34.7 Hz), 139.1, 138.6, 134.2, 131.7, 128.6, 127.2 (d, *J* = 8.9 Hz), 125.9 (d, *J* = 10.6 Hz), 125.1 (d, *J* = 18.6 Hz), 124.0, 124.0, 121.9 (d, *J* = 3.7 Hz), 121.2, 121.2, 118.6 – 118.2 (m), 57.7, 57.1, 49.5 (d, *J* = 12.8 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ –64.86; IR (Neat Film, NaCl) 3312, 3069, 1654, 1610, 1580, 1524, 1488, 1411, 1331, 1293, 1265, 1228, 1173, 1141, 1116, 1080, 1026, 857, 842, 797, 752, 720, 699, 665, 639 cm⁻¹; HRMS (MM) *m/z* calc'd for C₃₀H₂₃F₃N₃O₂ [M+H]⁺: 514.1737, found 514.1733.

N-((11*S*,12*S*)-12-benzamido-9,10-dihydro-9,10-ethanoanthracen-11-yl)-4methoxypicolinamide (L10): Product L18 was prepared according to general procedure 2 from SI3 and 4-methoxypicolinic acid (174 mg, 0.37 mmol, 70% yield); $[\alpha]_D^{25}$ 134.97 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, *J* = 5.6, 0.5 Hz, 1H), 7.94 (d, *J* = 8.6 Hz, 1H), 7.64 – 7.58 (m, 3H), 7.50 – 7.40 (m, 3H), 7.39 – 7.31 (m, 4H), 7.28 – 7.14

(m, 4H), 6.86 (dd, J = 5.7, 2.6 Hz, 1H), 6.12 (d, J = 7.6 Hz, 1H), 4.63 (d, J = 2.6 Hz, 1H), 4.47 (d, J = 2.5 Hz, 1H), 4.31 (dtd, J = 10.4, 6.3, 3.1 Hz, 2H), 3.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 166.9, 164.2, 151.3, 149.4, 141.3, 141.1, 139.2, 138.7, 134.3, 131.7, 128.6, 127.12, 127.09, 127.0, 126.0, 125.1, 124.9, 113.1, 107.6, 57.9, 56.9, 55.6, 49.6, 49.4; IR (Neat Film, NaCl) 3328, 2926, 1654,1599, 1579, 1566, 1518, 1489, 1308, 1257, 1226, 1138, 1030, 994, 849, 804, 784, 761, 716, 640 cm⁻¹; HRMS (MM) *m/z* calc'd for C₃₀H₂₆N₃O₂⁺ [M+H]: 476.1969, found 476.1950.

N-((11*S*,12*S*)-12-benzamido-9,10-dihydro-9,10-ethanoanthracen-11-yl)isoquinoline-1-carboxamide (L11): Product L11 was prepared according to general procedure 2 from SI3 and isoquinoline-1-carboxylic acid (173 mg, 69% yield); $[\alpha]_D^{25}$ 142.51 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.52 – 9.48 (m, 1H), 8.34 (d, *J* = 5.5 Hz, 1H), 8.17 (d, *J* = 8.5 Hz, 1H), 7.81 (dt, *J* = 8.4, 0.8 Hz, 1H), 7.74 (dd, *J* = 5.6, 1.0 Hz, 1H), 7.69 (ddd, *J* = 8.2, 6.8, 1.4 Hz, 1H), 7.64 (ddt, *J* = 6.9, 3.7, 1.9 Hz, 3H), 7.49 (dd, *J* = 7.1, 1.4 Hz, 2H), 7.47 – 7.42 (m, 1H), 7.41 – 7.32 (m, 4H), 7.28 – 7.16 (m, 4H), 6.08 (d, *J* = 7.7 Hz, 1H), 4.65 (d, *J* = 2.7 Hz, 1H), 4.58 (d, *J* = 2.7 Hz, 1H), 4.36 (dddd, *J* = 12.1, 8.6, 3.6, 2.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 166.0, 147.4, 141.4, 141.1, 140.3, 139.2, 138.9, 137.5, 134.4, 131.7, 130.6, 128.8, 128.7, 127.7, 127.10, 127.07, 127.05, 127.0, 126.9, 126.0, 125.1, 124.9, 124.6, 57.8, 57.2, 49.6, 49.5; IR (Neat Film, NaCl) 3328, 3054, 3022, 2952, 1650, 1602, 1582, 1510, 1489, 1466, 1383, 1325, 1292, 1260, 1222, 1144, 1110, 1024, 878, 834, 812, 800, 756, 715, 637, 619 cm⁻¹; HRMS (MM) *m/z* calc'd for C₃₃H₂₆N₃O₂ [M+H]⁺:496.2020, found 496.2014.

N-((11S,12S)-12-benzamido-9,10-dihydro-9,10-ethanoanthracen-11-yl)-6-

methylpicolinamide (L20): Product **L20** was prepared according to general procedure 2 from **SI3** and 6-methylpicolinic acid . The product was purified by column chromatography to provide a white solid (150 mg, 0.33 mmol, 65% yield); $[\alpha]_D^{25}$ 171.86 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.6 Hz, 1H), 7.87 (dt, *J* = 7.7, 0.9 Hz, 1H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.52 – 7.47 (m, 1H), 7.46 – 7.40 (m, 2H), 7.39 – 7.31 (m, 4H), 7.29 – 7.16 (m, 5H), 6.07 (d, *J* = 7.4 Hz, 1H), 4.64 (d, *J* = 2.6 Hz, 1H), 4.48 (d, *J* = 2.5 Hz, 1H), 4.34 – 4.27 (m, 2H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 164.3, 157.3, 148.6, 141.2, 139.2, 138.8, 137.5, 134.3, 131.7, 128.6, 127.1, 127.0, 126.9, 126.8, 126.1, 126.0, 125.9, 125.2, 124.9, 119.3, 57.9, 56.7, 49.7, 49.4, 24.3; IR (Neat Film, NaCl) 3328, 3022, 1654, 1595, 1578, 1521, 1489, 1455, 1376, 1312, 1328, 1292, 1258, 1227, 1116, 1084, 1026, 995, 820, 804, 757, 716, 691, 664, 638 cm⁻¹; HRMS (MM) *m/z* calc'd for C₃₀H₂₆N₃O₂ [M+H]⁺: 460.2020, found 460.2039.

N-((11S,12S)-12-benzamido-9,10-dihydro-9,10-ethanoanthracen-11-yl)-3-

methylpicolinamide (L21): Product **L21** was prepared according to general procedure 2 from **SI3** and 3-methylpicolinic acid . The product was purified by column chromatography to provide a white solid (148 mg, 0.3 mmol, 64% yield); $[\alpha]_D^{25}$ 165.82 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 4.5 Hz, 1H), 8.07 (d, *J* = 8.8 Hz, 1H), 7.64 – 7.58 (m, 2H), 7.53 (ddd, *J* = 7.8, 1.6, 0.8 Hz, 1H), 7.50 – 7.42 (m, 3H), 7.40 – 7.31 (m, 4H), 7.25 – 7.14 (m, 5H), 5.98 (d, *J* = 8.0 Hz, 1H), 4.61 (d, *J* = 2.8 Hz, 1H), 4.50 (d, *J* = 2.7 Hz,

1H), 4.34 - 4.28 (m, 1H), 4.23 (ddd, J = 8.8, 3.7, 2.8 Hz, 1H), 2.68 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 165.8, 146.6, 145.6, 141.4, 141.1, 140.9, 139.2, 138.9, 135.5, 134.3, 131.7, 128.7, 127.1, 127.0, 126.9, 126.0, 125.0, 124.9, 57.7, 57.0, 53.6, 49.6, 49.5, 20.6; IR (Neat Film, NaCl) 3327, 3046, 2956, 1654, 1602, 1579, 1508, 1466, 1446, 1380, 1308, 1326, 1292, 1222, 1122, 1080, 1026, 1002, 900, 814, 787, 762, 751, 712, 638, 662 cm⁻¹; HRMS (MM) *m/z* calc'd for C₃₀H₂₆N₃O₂ [M+H]⁺: 460.2020, found 460.2095.

N-((11*S*,12*S*)-12-benzamido-9,10-dihydro-9,10-ethanoanthracen-11-yl)quinoline-2carboxamide (L22): Product L22 was prepared according to general procedure 2 from SI2 and quinoline-2-carboxylic acid (174 mg, 0.35 mmol, 70% yield); $[\alpha]_D^{25}$ 221.25 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, *J* = 8.6, 0.8 Hz, 1H), 8.17 (d, *J* = 8.5 Hz, 1H), 8.15 (s, 1H), 7.98 – 7.92 (m, 1H), 7.87 – 7.81 (m, 1H), 7.73 (ddd, *J* = 8.4, 6.9, 1.4 Hz, 1H), 7.65 – 7.56 (m, 3H), 7.55 – 7.51 (m, 1H), 7.49 – 7.44 (m, 1H), 7.41 (ddd, *J* = 7.6, 6.2, 1.8 Hz, 2H), 7.39 – 7.16 (m, 7H), 6.13 (d, *J* = 7.4 Hz, 1H), 4.67 (d, *J* = 2.5 Hz, 1H), 4.54 (d, *J* = 2.5 Hz, 1H), 4.40 (ddt, *J* = 9.2, 3.5, 1.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 164.3, 149.1, 146.5, 141.1, 139.2, 138.8, 137.5, 134.3, 131.7, 130.2, 130.0, 129.4, 128.6, 128.1, 127.7, 127.2, 127.1, 127.0, 126.02, 125.95, 125.2, 124.9, 118.8, 57.9, 56.9, 49.7, 49.4; IR (Neat Film, NaCl) 3329, 3022, 1654, 1579, 1525, 1499, 1427, 1328, 1211, 1145, 1113, 1026, 904, 844, 794, 750, 715, 674, 638 cm⁻¹; HRMS (MM) *m/z* calc'd for C₃₃H₂₆N₃O₂ [M+H]⁺:496.2020, found 496.2010.

Additional Screening

Solvent Screen:^a

Ph Cl 1a 1 equiv		OTMS 0 - 2 1.5 equiv	CuCl₂ (10 mol %) <i>L8</i> (12 mol %), LiHMDS (26 mol %) CsOAc (1 equiv) solvent (0.08 M), 30 °C, 14 h		► Ph	
	т					
	entry	solvent	conversion (%) ^b	yield (%) ^b	ee (%) ^c	
	1	THF	100	90	92	-
	2	CH ₂ Cl ₂	66	49	38	
	3	Et ₂ O	28	20	74	
	4	toluene	20	7	-	
	5	MTBE	52	< 5	-	

a. Conditions: The Cu/*L*8 complex was synthesized according to Method C above. The THF was removed via vacuum, and the resulting solid was re-suspended in the appropriate solvent. The reactions were then set up and analyzed according to the procedure described above. b. determined by ¹H NMR of crude reaction mixture with 1,3,5-trimethoxybenzene as a standard. c. determined by chiral SFC, AD-column, 15% IPA, 2.5 mL/min.

Cu source screen:^a

a. Conditions: The Cu/*L*8 complex was synthesized according to Method C, but with the appropriate Cu salt. The reactions were then set up and analyzed according to the procedure described above. b. determined by ¹H NMR of crude reaction mixture with 1,3,5-trimethoxybenzene as a standard. c. determined by chiral SFC, AD-column, 15% IPA, 2.5 mL/min.

Base Screen:^a

	<u>`ci i</u>	OTMS	CuCl ₂ (5 mol %) <i>L8</i> (6 mol %), LiHMDS (13 mol %) Base (1 equiv) THF (0.04 M), 30 °C, 4 h		$\rightarrow Ph \xrightarrow{4.1} 0$	
1a 1 equiv	Ci +	2 1.5 equiv				
	entry	Base	conversion (%) ^b	yield (%) ^b	ee (%) ^c	
	1	None	14	0	_	
	2	LiOAc	24	16	-	
	3	NaOAc	66	64	92	
	4	KOAc	67	66	89	
	5	CsF	100	30	_	
	6	Cs ₂ CO ₃	92	0	-	

a. Conditions: The Cu/*L8* complex was synthesized according to Method C, but with the appropriate Cu salt. The reactions were then set up and analyzed according to the procedure described above. b. determined by ¹H NMR of crude reaction mixture with 1,3,5-trimethoxybenzene as a standard. c. determined by chiral SFC, AD-column, 15% IPA, 2.5 mL/min.

Other Nucleophiles Tested:^a

a. Conditions: The Cu/L8 complex was synthesized according to Method C, but with the appropriate Cu salt. The reactions were then set up and analyzed according to the procedure described above. b. determined by ¹H NMR of crude reaction mixture with 1,3,5-trimethoxybenzene as a standard.

Synthesis of Allylic Chloride Electrophiles:

General Procedure 3: Synthesis of Aryl-Substituted Allylic Chlorides (1b-1d, 1g, 1h, 1j-1m, 1p, 1s-1u).

(*E*)-2-(3-chloroprop-1-en-1-yl)naphthalene (1b): (*E*)-3-(naphthalen-2-yl)prop-2-en-1ol (553 mg, 3.0 mmol, 1.0 equiv) was dissolved in methylene chloride (6 mL, 0.5 M). Then, thionyl chloride (326 μ L, 4.5 mmol, 1.2 equiv) was added dropwise. The reaction

was allowed to stir for 2 h at 0 °C, then quenched with saturated aqueous NaHCO₃ solution (6 mL) and allowed to warm to room temperature. The aqueous layer was extracted with methylene chloride three times, and the resulting organic layers were dried over Na₂SO₄ and concentrated. The crude oil was then re-suspended in hexanes (10 mL) and washed with water 4 times. The hexanes layer was then dried with Na₂SO₄ and concentrated to afford the desired allylic chloride **1b** as a white solid (339 mg, 1.68 mmol, 56% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.91 – 7.83 (m, 3H), 7.83 – 7.79 (m, 1H), 7.65 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.57 – 7.47 (m, 2H), 6.88 (dtd, *J* = 15.6, 1.2, 0.6 Hz, 1H), 6.51 (dt, *J* = 15.6, 7.2 Hz, 1H), 4.37 (dd, *J* = 7.2, 1.2 Hz, 2H); All characterization data match those reported.¹⁰

(*E*)-1-(3-chloroprop-1-en-1-yl)naphthalene (1c): 994 mg, 4.9 mmol, 77% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.19 – 8.02 (m, 1H), 7.96 – 7.77 (m, 2H), 7.62 (dt, *J* = 7.3, 1.0 Hz, 1H), 7.59 – 7.38 (m, 4H), 6.37 (dtd, *J* = 15.1, 7.1, 0.8 Hz, 1H), 4.36 (dt, *J* = 7.1, 1.1 Hz, 2H); All characterization data match those reported.¹⁰

(*E*)-1-(3-chloroprop-1-en-1-yl)-2-methylbenzene (1d): 274 mg, 1.64 mmol, 55% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.50 – 7.38 (m, 1H), 7.22 – 7.12 (m, 3H), 6.88 (dt, *J* = 15.5, 1.2 Hz, 1H), 6.22 (dt, *J* = 15.4, 7.2 Hz, 1H), 4.28 (dd, *J* = 7.2, 1.2 Hz, 2H), 2.37 (s, 3H); All characterization data match those reported.¹¹

(*E*)-1-(3-chloroprop-1-en-1-yl)-3,5-dimethoxybenzene (1g): 106 mg, 0.5 mmol, 22% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.02 (dt, *J* = 1.5, 0.8 Hz, 2H), 6.93 (tt, *J* = 1.7, 0.8 Hz,

1H), 6.66 - 6.54 (m, 1H), 6.30 (dt, J = 15.6, 7.2 Hz, 1H), 4.24 (dd, J = 7.3, 1.2 Hz, 2H), 2.31 (t, J = 0.7 Hz, 6H); All characterization data match those reported.¹²

(*E*)-1-(3-chloroprop-1-en-1-yl)-4-methylbenzene (1h): 442 mg, 2.65 mmol, 88% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.18 – 7.11 (m, 2H), 6.63 (dd, *J* = 15.6, 1.1 Hz, 1H), 6.27 (dt, *J* = 15.6, 7.2 Hz, 1H), 4.25 (dd, *J* = 7.3, 1.2 Hz, 2H), 2.35 (s, 3H); All characterization data match those reported.¹⁴

(*E*)-1-chloro-4-(3-chloroprop-1-en-1-yl)benzene (1j): 609 mg, 3.25 mmol, 81% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.31 (d, *J* = 1.1 Hz, 4H), 6.61 (dt, *J* = 15.7, 1.3 Hz, 1H), 6.30 (dt, *J* = 15.6, 7.1 Hz, 1H), 4.23 (dd, *J* = 7.1, 1.2 Hz, 2H); All characterization data match those reported.¹⁰

(*E*)-1-bromo-4-(3-chloroprop-1-en-1-yl)benzene (1k): 579 mg, 2.5 mmol, 50% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.55 – 7.38 (m, 2H), 7.26 (s, 2H), 6.60 (d, *J* = 15.7 Hz, 1H), 6.31 (dt, *J* = 15.6, 7.1 Hz, 1H), 4.23 (dd, *J* = 7.1, 1.2 Hz, 2H); All characterization data match those reported.¹⁰

(*E*)-1-(3-chloroprop-1-en-1-yl)-4-(trifluoromethyl)benzene (1ll) and 1-(1-chloroallyl)-4-(trifluoromethyl)benzene (1lb): 405 mg, 1.8 mmol, 61% yield, 1ll:1lb = 83:17 (inseparable mixture); 1ll: ¹H NMR (300 MHz, CDCl₃) δ 7.73 – 7.39 (m, 5H), 6.70 (d, *J* = 15.7 Hz, 1H), 6.41 (dt, J = 15.5, 7.0 Hz, 1H), 4.25 (dd, J = 7.0, 1.3 Hz, 2H). **1lb**: ¹H NMR (300 MHz, CDCl₃) δ 7.70 – 7.34 (m, 4H), 6.13 (m, 1H), 5.54 – 5.26 (m, 3H); All characterization data match those reported.¹⁵

(*E*)-4-(3-chloroprop-1-en-1-yl)benzonitrile (1ml) and 4-(1-chloroallyl)benzonitrile (1mb): Isolated as an inseparable mixture of constitutional isomers 1ml and 1mb (210 mg, 1.18 mmol, 56% yield, 1ml:1mb = 59:42, 1m = 86:15, E:Z); ¹H NMR (400 MHz, CDCl₃) 1ml: δ 7.70 – 7.58 (m, 2H), 7.55 – 7.44 (m, 2H), 6.72 – 6.56 (m, 1H), 6.43 (dt, *J* = 15.7, 6.9 Hz, 1H), 4.25 (dd, *J* = 6.9, 1.2 Hz, 2H); 1mb: δ 7.70 – 7.58 (m, 2H), 7.55 – 7.44 (m, 2H), 6.72 – 6.56 (m, 1H), 6.43 (dt, *J* = 15.7, 6.9 Hz, 1H), 4.25 (dd, *J* = 6.9, 1.2 Hz, 2H); 1mb: δ 7.70 – 7.58 (m, 2H), 7.55 – 7.44 (m, 2H), 6.11 (ddd, *J* = 17.1, 10.1, 7.2 Hz, 1H), 5.45 (dd, *J* = 7.1, 1.1 Hz, 1H), 5.35 (dt, *J* = 16.8, 1.0 Hz, 1H), 5.30 (dt, *J* = 10.1, 0.9 Hz, 1H); 1ml and 1mb: ¹³C NMR (101 MHz, CDCl₃) δ , 140.5, 136.6, 134.8, 132.6, 132.6, 132.2, 129.3, 128.9, 128.3, 127.3, 118.8, 118.5, 118.3, 112.3, 111.6, 77.2, 57.4, 44.7, 25.2; IR (Neat Film, NaCl) 3042, 2956, 2357, 2227, 1921, 1654, 1606, 1504, 1439, 1412, 1333, 1303, 1250, 1215, 1177, 1156, 1109, 1075, 1017, 969, 936, 834, 811, 760, 722, 688, 672 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₀H₉ClN [M+H]⁺: 178.0418, found 178.0422.

((1*E*,3*E*)-5-chloropenta-1,3-dien-1-yl)benzene (1p): 1.32 g, 7.4 mmol, 92% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.26 (m, 5H), 6.78 (dd, *J* = 15.6, 10.4 Hz, 1H), 6.60 (d, *J* = 15.7 Hz, 1H), 6.46 (dd, *J* = 14.9, 10.3 Hz, 1H), 5.92 (dt, *J* = 14.8, 7.4 Hz, 1H), 4.18 (dd, *J* = 7.3, 1.1 Hz, 2H); All characterization data match those reported.¹⁶

(*E*)-(3-chloro-2-methylprop-1-en-1-yl)benzene (1s): 1.14 g, 6.84 mmol, 98% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.26 (s, 6H), 6.56 (s, 1H), 4.16 (t, *J* = 2.0 Hz, 2H), 1.96 (q, *J* = 2.2, 1.8 Hz, 3H); All characterization data match those reported.¹³

(*E*)-(4-chlorobut-2-en-2-yl)benzene (1t): 883 mg, 5.29 mmol, 76% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.26 (m, 6H), 6.00 (tq, *J* = 8.0, 1.4 Hz, 1H), 4.29 (d, *J* = 8.0 Hz, 2H), 2.15 (d, *J* = 1.5 Hz, 3H); All characterization data match those reported.¹³

(*E*)-(3-chloroprop-1-en-1-yl)cyclohexane(1vl) and (1-chloroallyl)cyclohexane (1vb): Isolated as an inseparable mixture of constitutional isomers 1vl and 1vb (623 mg, 3.9 mmol, 78% yield, 1vl:1vb = 1:2.8); ¹H NMR (400 MHz, CDCl₃) 1vl: 5.71 (ddt, J = 15.3, 6.5, 1.0 Hz, 1H), 5.55 (dtd, J = 15.3, 7.0, 1.3 Hz, 1H), 4.03 (dt, J = 7.0, 0.8 Hz, 2H), 1.93 (m, 1H), 1.83 – 1.56 (m, 5H), 1.33 – 0.95 (m, 5H); 1vb: δ 5.88 (ddd, J = 16.9, 10.1, 8.9 Hz, 1H), 5.31 – 5.09 (m, 2H), 4.17 (dd, J = 8.9, 6.4 Hz, 1H), 1.93 (ddt, J = 12.8, 3.6, 1.8 Hz, 1H), 1.83 – 1.56 (m, 5H), 1.33 – 0.95 (m, 5H); 1vl and 1vb: ¹³C NMR (101 MHz, CDCl₃) δ 141.9, 137.5, 123.6, 117.2, 69.4, 46.0, 44.5, 40.3, 32.6, 29.8, 29.6, 26.4, 26.2, 26.14, 26.07, 26.05; δ IR (Neat Film, NaCl) 3084, 2926, 2853, 1641, 1450, 1419, 1300, 1249, 1197, 987, 968, 926, 891, 780, 756, 688 cm⁻¹; HRMS (MM) *m/z* calc'd for C₉H₁₅Cl [M]^{+*}: 158.0862, found 158.0859.

(*E*)-1-(3-chloroprop-1-en-1-yl)-3-methylbenzene (1el) and 1-(1-chloroallyl)-3methylbenzene (1eb): 513 mg, 71% yield. To a solution of (E)-3-(*m*-tolyl)prop-2-en-1-ol (640 mg, 4.32 mmol, 1.0 equiv) in anhydrous Et_2O (4.3 mL, 1 M) at 0° C under a nitrogen

atmosphere was added thionyl chloride (0.38 mL, 5.2 mmol, 1.2 equiv). Stirring was continued at 0° C for 6 hours. The reaction was then diluted with Et₂O and washed with saturated aqueous NaHCO₃, followed by brine. The organic layer was dried over anhydrous sodium sulfate, filtered, and solvent was removed in vacuo. The crude was purified by flash column chromatography (5% EtOAc/hexanes) to yield the title compound colorless oil (513 mg, 3.08 mmol, 71% yield, **1el:1eb=** 9:1); ¹H NMR (500 MHz, CDCl₃) **1el**: δ 7.26 – 7.20 (m, 3H), 7.11 (d, *J* = 7.2 Hz, 1H), 6.64 (d, *J* = 15.4 Hz, 1H), 6.32 (dt, *J* = 15.4, 7.2 Hz, 1H), 4.26 (d, *J* = 7.2 Hz, 2H), 2.37 (s, 3H); **1eb**: δ 7.28 (d, *J* = 7.5 Hz, 1H), 7.26 – 7.20 (m, 3H), 7.14 (d, *J* = 7.6 Hz, 1H), 6.21 (ddd, *J* = 17.2, 10.1, 7.2 Hz, 1H), 5.44 (d, *J* = 7.2 Hz, 1H), 5.36 (d, *J* = 16.8 Hz, 1H), 5.25 (d, *J* = 10.1 Hz, 1H), 2.39 (s, 3H); **1el** and **1eb**: ¹³C NMR (125 MHz, CDCl₃) δ 140.1, 138.6, 138.4, 137.9, 136.0, 134.4, 129.3, 129.2, 128.7, 128.2, 127.5, 124.8, 124.6, 124.0, 116.9, 63.8, 45.7, 21.5; IR (Neat Film, NaCl) 3033, 2952, 2921, 2860, 1651, 1604, 1486, 1439, 1251, 964, 778 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₀H₁₂ [M–Cl⁻]+: 131.0861, found 131.0858.

(*E*)-1-(3-chloroprop-1-en-1-yl)-4-fluorobenzene (1i):): 1-(4-fluorophenyl)prop-2-en-1ol (750 mg, 4.92 mmol, 1.0 equiv) was dissolved in methylene chloride (6 mL, 0.5 M). Then, thionyl chloride (428 μ L, 5.9 mmol, 1.2 equiv) was added dropwise. The reaction was allowed to stir for 2 h at 0 °C, then quenched with saturated aqueous NaHCO₃ solution (6 mL) and allowed to warm to room temperature. The aqueous layer was extracted with methylene chloride three times, and the resulting organic layers were dried over Na₂SO₄ and concentrated. The crude oil was then re-suspended in hexanes (10 mL) and washed with water 4 times. The hexanes layer was then dried with Na₂SO₄ and concentrated by rotary evaporator. The crude product was purified by column chromatography (100% hexanes) to afford the desired allylic chloride **1g** as a white solid (420 mg, 2.46 mmol, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.31 (m, 2H), 7.12 – 6.95 (m, 2H), 6.62 (dt, *J* = 15.6, 1.2 Hz, 1H), 6.24 (dtd, *J* = 15.6, 7.2, 0.6 Hz, 1H), 4.23 (dd, *J* = 7.2, 1.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 161.6, 133.1, 132.2, 128.4, 124.8, 115.9, 115.7, 45.5; ¹⁹F NMR (282 MHz, CDCl₃) δ –113.30; IR (Neat Film, NaCl) 3043, 2361, 1602, 1508, 1300, 1234, 1158, 966, 814 cm⁻¹; HRMS (MM) *m/z* calc'd for C₉H₈ClF [M]⁺: 170.0299, found 170.0299

(E)-3-(2.3-dihydrobenzofuran-5-vl)prop-2-en-1-ol (SI4): To a solution of ethyl (E)-3-(2,3-dihydrobenzofuran-5-yl)acrylate (2.40 g, 11.0 mmol, 1.0 equiv) in anhydrous DCM (37 mL, 0.3 M) under nitrogen atmosphere at -78° C was dropwise added neat DIBAL-H (4.37 mL, 24.2 mmol, 2.20 equiv). The reaction was then allowed to warm to room temperature and stirring was continued for 12 hours. Upon completion, the reaction was cooled to 0° C and EtOAc (10 mL) was slowly added. The reaction was then diluted with Et₂O and a saturated aqueous solution of Rochelle's salt (ca. 150 mL) was added. Stirring was continued at room temperature for 1 hour. The biphasic mixture was then extracted with EtOAc (3x). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and solvent was removed in vacuo to yield the crude product as a colorless solid (1.66 g, 9.42 mmol, 86% yield). The crude alcohol was isolated in good purity and used directly in the next step. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (s, 1H), 7.13 (dd, J = 8.2, 1.4 Hz, 1H), 6.73 (d, J = 8.2 Hz, 1H), 6.54 (d, J = 15.8 Hz, 1H), 6.20 (dt, J = 15.8, 6.0 Hz, 1H), 4.58 (t, J = 8.7 Hz, 2H), 4.29 (dd, J = 6.0, 1.4 Hz, 2H), 3.20 (t, J = 8.7 Hz, 2H), 1.48 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 131.6, 129.6, 127.6, 127.1, 125.7, 122.9, 109.4, 71.6, 64.2, 29.7; IR (Neat Film, NaCl) 3291, 2914, 2889, 2861, 1610, 1490, 1243, 1218, 1106, 1086, 970; HRMS (MM) m/z calc'd for $C_{11}H_{11}O [M-OH^-]^+$: 159.0804, found 159.0804.

(*E*)-5-(3-chloroprop-1-en-1-yl)-2,3-dihydrobenzofuran (1n): To a solution of (*E*)-3-(2,3-dihydrobenzofuran-5-yl)prop-2-en-1-ol (600 mg, 3.40 mmol, 1.0 equiv) in anhydrous Et_2O (4.3 mL, 1 M) at 0° C under a nitrogen atmosphere was added thionyl chloride (0.30 mL, 4.1 mmol, 1.2 equiv). Stirring was continued at 0° C for 12 hours. The reaction was then diluted with Et₂O and washed with saturated aqueous NaHCO₃, followed by brine. The organic layer was dried over anhydrous sodium sulfate, filtered, and solvent was removed in vacuo to yield the crude product as a tan amorphous solid (350 mg, 1.80 mmol, 53% yield). The crude allyl chloride was stored cold under nitrogen and used directly in the next reaction, as it was unstable to silica and neutral alumina. (50 mg, 0.26 mmol, 51% yield). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.26 (d, *J* = 1.3 Hz, 1H), 7.10 (d, *J* = 10.0 Hz, 1H), 6.67 (d, *J* = 8.2 Hz, 1H), 6.56 (d, *J* = 15.6 Hz, 1H), 6.19 – 6.07 (m, 1H), 4.53 (t, *J* = 8.7 Hz, 3H), 4.21 (d, *J* = 7.4 Hz, 2H), 3.16 (t, *J* = 8.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 134.4, 128.8, 127.7, 127.5, 123.1, 122.1, 109.4, 71.6, 46.2, 29.7; IR (Neat Film, NaCl) 2960, 2894, 1646, 1611, 1492, 1440, 1246, 1102, 982, 808 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₁H₁₂ClO [M+H]⁺: 195.0571, found 195.0571.

3-(1-hydroxyallyl)phenyl trifluoromethanesulfonate (SI5): To a solution of 3formylphenyl trifluoromethanesulfonate(635 mg, 2.5 mmol, 1.0 equiv) in THF (6.6 mL, 0.38 M) at -78° C was added vinylmagnesium bromide (2.53 mL, 2.53 mmol, 1M solution in THF) slowly. The reaction was allowed to stir for 4 h at -78° C, then quenched with saturated aqueous NH₄Cl solution (6 mL) and allowed to warm to room temperature. The aqueous layer was extracted with methylene chloride three times, and the resulting organic layers were dried over Na₂SO₄ and concentrated. The crude allylic alcohol was purified by column chromatography to afford a yellow oil (542 mg, 1.92 mmol, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.30 (m, 2H), 7.25 (s, 1H), 7.15 – 7.10 (m, 1H), 6.03 – 5.81 (m, 1H), 5.31 (d, *J* = 18.3 Hz, 1H), 5.19 (d, *J* = 11.2 Hz, 2H), 2.00 (d, *J* = 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 145.7, 139.5, 130.4, 126.3, 123.7 – 114.1 (q, *J* = 320.7 Hz), 120.5, 119.3, 116.7, 114.1, 74.6; ¹⁹F NMR (282 MHz, CDCl₃) δ –72.93; IR (Neat Film, NaCl) 3573, 3358, 3087, 2878, 1614, 1583, 1485, 1425, 1249, 1208, 1141, 1035, 990, 960, 912, 841, 96, 775, 753, 696, 657, 666 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₀H₈F₃O₃S [M–OH⁻]⁺: 265.0141, found 265.0146. General Procedure 4: Synthesis of Allylic Chlorides 1f, 1n, and 1o.

3-(1-chloroallyl)phenyl trifluoromethanesulfonate(1fl) and (E)-3-(3-chloroprop-1-en-1-yl)phenyl trifluoromethanesulfonate (1fb): N-chlorosuccinamide (150 mg, 1.125 mmol, 1.5 equiv) was dissolved in dicholoromethane (3.0 mL) and cooled to 0 °C. Dimethylsulfide (103 µL, 1.39 mmol, 1.85 equiv) was added slowly and the resulting suspension was cooled to -10 °C. 3-(1-hydroxyallyl)phenyl trifluoromethanesulfonate (SI5, 211mg, 0.75 mmol, 1.0 equiv) in dichloromethane (1.5 mL) was then added slowly. The reaction was warmed to 0 °C and allowed to stir for 3 h. Upon consumption of the starting material, the reaction was quenched with ice-cold water, and extracted with diethyl ether four times. The combined extracts were then rinsed with water and brine, and dried over Na₂SO₄. The resulting crude oil was purified by column chromatography to afford (*E*)-3-(3-chloroprop-1-en-1-yl)phenyl trifluoromethanesulfonate (1fl) 3-(1chloroallyl)phenyl trifluoromethanesulfonate (1fb) and in an inseparable mixture (112 mg, 50% yield, 1fl:1fb = 60:40, 1fl = 86:14 E/Z); ¹H NMR (300 MHz, CDCl₃) 1fl: δ 7.50 – 7.12 (m, 4H), 6.12 (ddd, J = 17.0, 10.1, 7.1 Hz, 1H), 5.46 (dt, J = 7.2, 1.1 Hz, 1H), 5.40 -5.27 (m, 2H), 4.60 (s, 1H); **1fb:** δ 7.50 –7.12 (m, 4H), 6.66 (dt, J = 15.7, 1.2 Hz, 1H), 6.44 -6.32 (m, 1H), 4.24 (dd, J = 7.0, 1.2 Hz, 2H); **1fl** and **1fb**: ¹³C NMR (101 MHz, CDCl₃) δ 150.0, 149.7, 143.0, 138.8, 136.8, 133.7, 132.0, 130.7, 130.6, 128.5, 127.8, 127.5, 126.7, 121.6, 121.4, 120.8, 120.7, 120.4, 119.4, 118.3, 117.3, 61.9, 57.5, 44.8, 44.7, 25.3; ¹⁹F NMR (282 MHz, CDCl₃) δ –72.86 (m); IR (Neat Film, NaCl) 2916, 2849, 1611, 1576, 1487, 1422, 1247, 1215, 1140, 1120, 962, 908, 886, 847, 787, 680 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₀H₈ClF₃SO₃ [M]*⁺: 299.9835, found 299.9846.

S 10

(*E*)-3-(3-chloroprop-1-en-1-yl)thiophene(1o): Synthesized from (*E*)-3-(thiophen-3-yl)prop-2-en-1-ol according to General Procedure 4, and used without further purification

(286 mg, 1.84 mmol, 48% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.29 (ddd, J = 5.0, 3.0, 0.6 Hz, 1H), 7.24 – 7.19 (m, 2H), 6.67 (ddq, J = 15.6, 1.2, 0.6 Hz, 1H), 6.17 (dt, J = 15.5, 7.2 Hz, 1H), 4.22 (dd, J = 7.3, 1.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 138.7, 128.5, 126.5, 125.1, 124.9, 123.6, 45.7; IR (Neat Film, NaCl) 3736, 3103, 2952, 1650, 1417, 1293, 1247, 1150, 1074, 961, 865, 768 cm⁻¹; HRMS (MM) *m/z* calc'd for C₇H₇S [M–Cl^{-]+}: 123.0268, found 123.0260.

(*E*)-(5-chloropent-3-en-1-yl)benzene (1q): Compound 1q was prepared from the corresponding allylic alcohol according to a previously reported procedure.¹¹¹H NMR (500 MHz, CDCl₃) δ 7.30 (td, *J* = 7.4, 1.4 Hz, 2H), 7.24 – 7.16 (m, 3H), 5.82 (dtd, *J* = 14.5, 6.6, 1.2 Hz, 1H), 5.66 (dddq, *J* = 15.4, 7.1, 6.2, 1.3 Hz, 1H), 4.04 (dt, *J* = 7.1, 1.0 Hz, 2H), 2.72 (dd, *J* = 8.7, 7.0 Hz, 2H), 2.47 – 2.33 (m, 2H); All characterization data match those reported.¹²

(*Z*)-(3-chloroprop-1-en-1-yl)benzene (1u): Compound 1u was prepared from the corresponding allylic alcohol according to a previously reported procedure (*Z*:E=97:3). ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.35 (m, 2H), 7.34 – 7.27 (m, 3H), 6.67 (d, *J* = 11.4 Hz, 1H), 5.98 – 5.85 (m, 1H), 4.32 – 4.25 (m, 2H); All characterization data match those reported.¹⁷

Procedure for Cu-Catalyzed Allylic Alkylation Reactions

n = number of reactions. To a 4 mL vial containing $CuCl_2$ (1.34n mg, 0.01n mmol, 0.05 equiv) in the glovebox was added a solution of the L8 (5.2n mg, 0.012n mmol, 0.06 equiv) in THF (0.8n mL), followed by a solution of LiHMDS (4.35n mg, 0.026n mmol, 0.13 equiv) in THF (0.8n mL). The resulting solution was stirred for 1 h at room temperature. This solution (1.6 mL) was then transferred to a vial containing CsOAc, followed by silyl ketene acetal 2 (47.5 mg, 0.3 mmol, 1.5 equiv) in THF (1.6 mL). The mixture was allowed to stir for 5 min, then allyl chloride (30.4 mg, 0.2 mmol, 1 equiv) in THF (1.6 mL) was added and the reaction was allowed to stir for 6 h at 30 °C. The reaction was then quenched with sat. NH₄Cl solution and a few drops of TMEDA, and the aqueous layer was extracted five times with ethyl acetate. The combined organic extracts were dried with Na₂SO₄, and concentrated by rotary evaporator. The crude oil was then purified by column chromatography to afford the desired product.

Spectroscopic Data for Products from Catalytic Reactions

<u>Please note</u> that the absolute configuration was determined only for compound **3ba** via x-ray crystallographic analysis. The absolute configuration for all other products has been inferred by analogy.

(*S*)-3-cinnamyldihydrofuran-2(3*H*)-one (3a): Product 3a was purified by column chromatography (25% EtOAc in hexanes) to provide a white solid (36.4 mg,0.18 mmol, 90% yield); 94% *ee*; $[\alpha]_D^{25}$ 46.62 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 –

7.28 (m, 4H), 7.26 – 7.20 (m, 1H), 6.49 (dt, J = 15.7, 1.4 Hz, 1H), 6.29 – 6.08 (m, 1H), 4.35 (td, J = 8.8, 3.1 Hz, 1H), 4.22 (td, J = 9.2, 6.9 Hz, 1H), 2.82 – 2.67 (m, 2H), 2.53 – 2.34 (m, 2H), 2.15 – 2.00 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 137.0, 133.2, 128.7, 127.6, 126.3, 125.9, 66.8, 39.4, 33.7, 27.9; IR (Neat Film, NaCl) 3057, 3027, 2988, 2936, 2906, 1770, 1480, 1436, 1378, 1314, 1294, 1251, 1208, 1190, 1164, 1074, 1021, 988, 966, 812, 798, 751, 705, 695, 681, 671, 622 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₃H₁₅O₂ [M+H]⁺: 203.1067, found 203.1064; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): major = 4.70, minor = 5.02.

(*S,E*)-3-(3-(naphthalen-2-yl)allyl)dihydrofuran-2(3*H*)-one (3b): Product 3b was purified by column chromatography (25% EtOAc in hexanes) to provide a white solid (43.4 mg, 0.17 mmol, 86% yield); 91% *ee*; $[\alpha]_D^{25}$ 32.53 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.75 (m, 3H), 7.70 (d, *J* = 1.7 Hz, 1H), 7.57 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.51 – 7.39 (m, 2H), 6.65 (dd, *J* = 15.8, 1.6 Hz, 1H), 6.30 (dt, *J* = 15.7, 7.1 Hz, 1H), 4.35 (td, *J* = 8.8, 3.0 Hz, 1H), 4.22 (td, *J* = 9.3, 6.8 Hz, 1H), 2.90 – 2.68 (m, 2H), 2.62 – 2.28 (m, 2H), 2.08 (dtd, *J* = 12.7, 9.7, 8.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 134.5, 133.7, 133.2, 133.0, 128.3, 128.0, 127.8, 126.4, 126.3, 126.0, 125.9, 123.5, 66.7, 39.4, 33.8, 28.0; IR (Neat Film, NaCl) 2905, 1767, 1452, 1374, 1154, 1020, 964, 866, 821, 753, 668 cm⁻¹; HRMS (MM) *m*/*z* calc'd for C₁₇H₁₇O₂ [M+H]⁺: 253.1223, found 253.1232; SFC Conditions: 35% IPA, 3.5 mL/min, Chiralcel OD-H column, λ = 254 nm, t_R (min): major = 3.63, minor = 3.97.

(*S*,*E*)-3-(3-(naphthalen-1-yl)allyl)dihydrofuran-2(3*H*)-one (3c): Product 3c was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless solid (42.4 mg, 0.17 mmol, 84% yield); 91% *ee*; $[\alpha]_D^{25}$ 29.405 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.04 (m, 1H), 7.91 – 7.82 (m, 1H), 7.78 (dt, *J* = 8.1, 1.0 Hz, 1H),

7.59 – 7.39 (m, 4H), 7.22 (s, 1H), 6.19 (dt, J = 15.5, 7.2 Hz, 1H), 4.38 (td, J = 8.8, 3.1 Hz, 1H), 4.24 (td, J = 9.3, 6.9 Hz, 1H), 2.95 – 2.74 (m, 2H), 2.58 (dddd, J = 13.9, 8.4, 7.3, 1.4 Hz, 1H), 2.45 (dddd, J = 12.7, 8.7, 6.9, 3.1 Hz, 1H), 2.14 (dtd, J = 12.7, 9.7, 8.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 134.9, 133.7, 131.1, 130.5, 129.3, 128.7, 128.0, 126.2, 125.9, 125.7, 123.9, 123.8, 66.8, 39.5, 34.1, 28.0; IR (Neat Film, NaCl) 3746, 2909, 2358, 1769, 1508, 1374, 1153, 1023, 969, 777 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₇H₁₇O₂ [M+H]⁺: 253.1223, found 253.1221; SFC Conditions: 25% IPA, 2.5 mL/min, Chiralcel OD-H column, $\lambda = 210$ nm, t_R (min): major = 10.39, minor = 11.48.

(*S*,*E*)-3-(3-(*o*-tolyl)allyl)dihydrofuran-2(3*H*)-one (3d): Product 3d was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (27.2 mg, 0.13 mmol, 63% yield); 94% *ee*; $[\alpha]_D^{25}$ 26.0 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 2H), 7.11 (s, 2H), 6.45 (d, *J* = 15.7 Hz, 1H), 6.17 – 6.05 (m, 1H), 4.38 – 4.30 (m, 1H), 4.26 – 4.17 (m, 1H), 2.80 – 2.67 (m, 2H), 2.51 – 2.35 (m, 2H), 2.33 (s, 3H), 2.05 (t, *J* = 9.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 131.1, 130.4, 127.5, 127.3, 126.2, 125.7, 66.7, 39.5, 34.0, 27.9, 20.0; IR (Neat Film, NaCl) 2912, 1767, 1597, 1451, 1373, 1200, 1152, 1021, 966, 863, 821, 748 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₄H₁₇O₂ [M+H]⁺: 217.1223, found 217.1221; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralcel OD-H column, $\lambda = 254$ nm, t_R (min): major = 5.05, minor = 5.73.

(S,E)-3-(3-(m-tolyl)allyl)dihydrofuran-2(3H)-one (3e): Compound 3e was purified by column chromatography column chromatography (30% EtOAc/hexanes) to afford the title compound as a colorless oil (38.3 mg, 0.18 mmol, 88% yield); 90% *ee*; $[\alpha]_D^{23}$ 31.6 (c 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.14 (m, 3H), 7.05 (d, *J* = 7.4 Hz, 1H), 6.46 (d, *J* = 15.7 Hz, 1H), 6.16 (dt, *J* = 15.8, 7.2 Hz, 1H), 4.34 (td, *J* = 8.8, 3.1 Hz, 1H), 4.21

(td, J = 9.3, 6.9 Hz, 1H), 2.78 – 2.69 (m, 2H), 2.50 – 2.36 (m, 2H), 2.34 (s, 3H), 2.11 – 2.00 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 179.0, 137.4, 134.3, 133.0, 129.4, 126.2, 124.8, 66.8, 39.5, 33.7, 27.9, 21.3; IR (Neat Film, NaCl) 2911, 1769, 1602, 1486, 1454, 1374, 1152, 1022, 968, 775 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₄H₁₇O₂ [M+H]⁺: 217.1223, found 217.1227; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralcel OD-H column, $\lambda = 254$ nm, t_R (min): minor = 6.93, major = 5.48.

(S,E)-3-(3-(2-oxotetrahydrofuran-3-yl)prop-1-en-1-yl)phenyl

trifluoromethanesulfonate (3f): Product 3f was purified by column chromatography (25% EtOAc in hexanes) to provide a pale yellow oil (41.8 mg, 0.12 mmol, 60% yield); 88% *ee*; $[\alpha]_D^{25}$ 16.88 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.32 (m, 2H), 7.24 – 7.20 (m, 1H), 7.12 (dt, *J* = 7.2, 2.3 Hz, 1H), 6.48 (dt, *J* = 15.8, 1.4 Hz, 1H), 6.25 (dt, *J* = 15.8, 7.1 Hz, 1H), 4.36 (td, *J* = 8.9, 2.8 Hz, 1H), 4.23 (td, *J* = 9.4, 6.8 Hz, 1H), 2.85 – 2.68 (m, 2H), 2.54 – 2.35 (m, 2H), 2.12 – 1.97 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.6, 150.0, 139.8, 131.2, 130.5, 128.9, 126.2, 120.0, 118.9, 118.8 (q, *J* = 320.7 Hz), 66.7, 39.2, 33.6, 28.1; ¹⁹F NMR (282 MHz, CDCl₃) δ -72.94; IR (Neat Film, NaCl) 2912, 2356, 1770, 1654, 1609, 1573, 1486, 1421, 1248, 1214, 1141, 1118, 1023, 960, 904, 884, 848, 786, 736, 683, 658, 606 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₄H₁₄F₃O₂S [M+H]⁺: 351.0509, found 351.0508; SFC Conditions: 5% IPA, 2.5 mL/min, Chiralcel OJ-H column, $\lambda = 254$ nm, t_R (min): minor = 6.9, major = 7.2.

(*S*,*E*)-3-(3-(3,5-dimethoxyphenyl)allyl)dihydrofuran-2(3*H*)-one (3g): Product 3g was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (38.8 mg, 0.15 mmol, 74% yield); 80% *ee*; $[a]_D^{25}$ 30.71 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, *J* = 1.5 Hz, 2H), 6.92 – 6.85 (m, 1H), 6.49 – 6.38 (m, 1H), 6.14
(dt, J = 15.7, 7.1 Hz, 1H), 4.34 (td, J = 8.8, 3.1 Hz, 1H), 4.21 (td, J = 9.3, 6.9 Hz, 1H), 2.73 (dddd, J = 12.0, 10.4, 6.7, 3.6 Hz, 2H), 2.52 – 2.24 (m, 8H), 2.16 – 2.00 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 179.0, 138.2, 136.9, 133.3, 129.4, 129.3, 125.5, 124.2, 66.7, 39.4, 33.7, 27.9; IR (Neat Film, NaCl) 2914, 1768, 1600, 1438, 1374, 1153, 1022, 970, 844, 692 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₅H₁₉O₄ [M+H]⁺: 263.1278, found 263.1268; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralcel OD-H column, $\lambda = 254$ nm, t_R (min): major = 5.50, minor = 6.85.

(*S*,*E*)-3-(3-(*p*-tolyl)allyl)dihydrofuran-2(3*H*)-one(3da): Product 3da was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (38.9 mg, 0.18 mmol, 90% yield); 93% *ee*; $[\alpha]_D^{25}$ 38.205 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 7.9 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 6.49 – 6.42 (m, 1H), 6.11 (dt, J = 15.7, 7.2 Hz, 1H), 4.34 (td, J = 8.8, 3.1 Hz, 1H), 4.21 (td, J = 9.2, 6.9 Hz, 1H), 2.82 – 2.66 (m, 2H), 2.52 – 2.30 (m, 5H), 2.05 (dtd, J = 12.6, 9.6, 8.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 179.0, 137.4, 134.2, 132.9, 129.4, 126.2, 124.8, 66.7, 39.4, 33.7, 27.9, 21.3; IR (Neat Film, NaCl) 2919, 1770, 1513, 1454, 1373, 1152, 1020, 972, 823, 680 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₄H₁₇O₂ [M+H]⁺: 217.1223, found 217.1224; SFC Conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): major = 7.90, minor = 8.41.

(*S*,*E*)-3-(3-(4-fluorophenyl)allyl)dihydrofuran-2(3*H*)-one (3i): Product 3i was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (37.3 mg, 0.17 mmol, 85% yield); 92% *ee*; $[\alpha]_D^{25}$ -30.42 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 2H), 7.05 – 6.94 (m, 2H), 6.44 (dt, *J* = 15.8, 1.4 Hz, 1H), 6.08 (dt, *J* = 15.7, 7.1 Hz, 1H), 4.35 (td, *J* = 8.8, 3.0 Hz, 1H), 4.22 (td, *J* = 9.3, 6.9 Hz, 1H), 2.79

-2.66 (m, 2H), 2.51 -2.33 (m, 2H), 2.05 (dtd, J = 12.7, 9.6, 8.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 163.5, 161.1, 133.2 (d, J = 3.3 Hz), 131.9, 127.8 (d, J = 8.0 Hz), 126.0 -125.1 (m), 115.6 (d, J = 21.6 Hz), 66.7, 39.4, 33.6, 28.0; ¹⁹F NMR (282 MHz, CDCl₃) δ -114.71 (tt, J = 8.5, 5.3 Hz); IR (Neat Film, NaCl) 3734, 2910, 2358, 1769, 1601, 1508, 1456, 1374, 1226, 1157, 1023, 970, 838 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₃H₁₄FO₂ [M+H]⁺: 219.0972, found 219.0974; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralpak OD-H column, $\lambda = 280$ nm, t_R (min): major = 5.10, minor = 5.57.

(*S*,*E*)-3-(3-(4-chlorophenyl)allyl)dihydrofuran-2(3*H*)-one (3j): Product 3j was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (44.4 mg, 0.19 mmol, 94% yield); 88% *ee*; $[\alpha]_D^{25}$ 32.55 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 4H), 6.43 (dt, *J* = 15.7, 1.4 Hz, 1H), 6.14 (dt, *J* = 15.8, 7.1 Hz, 1H), 4.34 (td, *J* = 8.8, 3.0 Hz, 1H), 4.21 (td, *J* = 9.3, 6.8 Hz, 1H), 2.84 – 2.67 (m, 2H), 2.53 – 2.31 (m, 2H), 2.04 (dtd, *J* = 12.7, 9.7, 8.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 135.5, 133.2, 131.9, 128.8, 127.5, 126.7, 66.7, 39.3, 33.6, 28.0; IR (Neat Film, NaCl) 2910, 1770, 1490, 1454, 1405, 1375, 1326, 1154, 1091, 1023, 970, 830 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₃H₁₄ClO₂ [M+H]⁺: 237.0667, found 237.0682; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralcel aOD-H column, $\lambda = 254$ nm, t_R (min): major = 5..30, minor = 5.90.

(*S,E*)-3-(3-(4-bromophenyl)allyl)dihydrofuran-2(3*H*)-one (3k): Product 3k was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (43.5 mg, 0.154 mmol, 77% yield); 90% *ee*; $[\alpha]_D^{25}$ 13.95 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.38 (m, 2H), 7.24 – 7.17 (m, 2H), 6.42 (dd, *J* = 15.7, 1.5 Hz, 1H), 6.17 (dt, *J* = 15.8, 7.1 Hz, 1H), 4.34 (td, *J* = 8.8, 3.0 Hz, 1H), 4.21 (td, *J* = 9.3, 6.8 Hz, 1H), 2.85 – 2.62 (m, 2H), 2.53 – 2.30 (m, 2H), 2.04 (dtd, *J* = 12.7, 9.7, 8.6 Hz, 1H); ¹³C NMR

(101 MHz, CDCl₃) δ 178.7, 135.9, 132.0, 131.8, 127.8, 126.8, 121.3, 66.7, 39.3, 33.6, 28.0; IR (Neat Film, NaCl) 2910, 1769, 1487, 1454, 1401, 1375, 1260, 1156, 1072, 1023, 969, 799, 707 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₃H₁₄BrO₂ [M+H]⁺: 281.0172, found 281.0175; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 254 nm, t_R (min): major = 6.34, major = 7.18.

(*S,E*)-3-(3-(4-(trifluoromethyl)phenyl)allyl)dihydrofuran-2(*3H*)-one (3l): Product 3l was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (44.9 mg, 0.17 mmol, 83% yield); 90% *ee*; $[\alpha]_D^{25}$ 30.89 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.2 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 6.52 (dd, *J* = 15.9, 1.7 Hz, 1H), 6.29 (dt, *J* = 15.8, 7.1 Hz, 1H), 4.36 (td, *J* = 8.8, 2.9 Hz, 1H), 4.22 (td, *J* = 9.4, 6.8 Hz, 1H), 2.84 – 2.68 (m, 2H), 2.56 – 2.34 (m, 2H), 2.05 (dtd, *J* = 12.7, 9.8, 8.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.6, 140.4, 131.8, 129.3 (q, *J* = 32.3 Hz), 126.4, 125.5 (q, *J* = 3.8 Hz), 122.9, 66.7, 39.2, 33.7, 28.0; ¹⁹F NMR (282 MHz, CDCl₃) δ -62.50; IR (Neat Film, NaCl) 2914, 1770, 1614, 1414, 1376, 1326, 1157, 1119, 1067, 1018, 970, 834, 682 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₄H₁₄F₃O₂ [M+H]⁺: 271.0940, found 271.0945; SFC Conditions: 10% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 210 nm, t_R (min): major= 5.32, major = 5.86.

(*S*,*E*)-4-(3-(2-oxotetrahydrofuran-3-yl)prop-1-en-1-yl)benzonitrile (3m): Product 3m was purified by column chromatography (40% EtOAc in hexanes) to provide a colorless oil (43.6 mg, 0.19 mmol, 96% yield, 98:2 E:Z); 86% *ee*; $[\alpha]_D^{25}$ 48.79 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2H), 7.46 – 7.39 (m, 2H), 6.50 (dd, *J* = 15.8, 1.5 Hz, 1H), 6.33 (dt, *J* = 15.8, 7.0 Hz, 1H), 4.40 – 4.31 (m, 1H), 4.22 (td, *J* = 9.4, 6.7 Hz, 1H), 2.85 – 2.68 (m, 2H), 2.56 – 2.35 (m, 2H), 2.13 – 1.96 (m, 1H); ¹³C NMR (101 MHz,

CDCl₃) δ 178.5, 141.4, 132.5, 131.6, 130.2, 126.8, 119.0, 110.8, 66.7, 39.2, 33.7, 28.1; IR (Neat Film, NaCl) 3432, 2924, 2224, 1766, 1604, 1375, 1156, 1021, 970, 837 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₄H₁₄NO₂ [M+H]⁺: 228.1019, found 228.1020; SFC Conditions: 25% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 280 nm, t_R (min): major = 4.19, minor = 4.46.

(S,E)-3-(3-(2,3-dihydrobenzofuran-5-yl)allyl)dihydrofuran-2(3H)-one (3n): Compound 3n was purified by flash column chromatography (40% EtOAc/hexanes) to afford the title compound as a colorless amorphous solid (27.6 mg, 0.11 mmol, 56% yield); 95% *ee*; $[\alpha]_D^{23}$ 35.0 (c 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 1H), 7.08 (dd, J = 8.2, 1.4 Hz, 1H), 6.71 (d, J = 8.2 Hz, 1H), 6.41 (d, J = 15.7 Hz, 1H), 5.98 (dt, J = 15.7, 7.2 Hz, 1H), 4.56 (t, J = 8.7 Hz, 2H), 4.33 (td, J = 8.8, 3.2 Hz, 1H), 4.21 (td, J = 9.2, 6.9Hz, 1H), 3.19 (t, J = 8.6 Hz, 2H), 2.75 – 2.67 (m, 2H), 2.47 – 2.41 (m, 2H), 2.39 – 2.33 (m, 2H), 2.05 (dtd, J = 12.9, 9.5, 8.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 179.0, 159.9, 132.9, 129.9, 127.6, 126.7, 122.9, 122.5, 109.3, 71.5, 66.8, 39.5, 33.7, 29.7, 27.8; IR (Neat Film, NaCl) 2912, 1764, 1608, 1491, 1374, 1244, 1150, 1022, 980 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₅H₁₇O₃ [M+H]⁺: 245.1172, found 245.1171; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralcel OD-H column, $\lambda = 210$ nm, t_R (min): minor = 6.93, major = 6.05.

(*S*,*E*)-3-(3-(thiophen-3-yl)allyl)dihydrofuran-2(3*H*)-one (3o): Product 3o was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (29.6 mg, 0.142 mmol, 71% yield); 90% *ee*; $[\alpha]_D^{25}$ 45.11 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 1H), 7.18 (dd, *J* = 5.0, 1.4 Hz, 1H), 7.10 (dd, *J* = 3.0, 1.3 Hz, 1H), 6.49 (dd, *J* = 15.8, 1.6 Hz, 1H), 6.09 – 5.91 (m, 1H), 4.43 – 4.28 (m, 1H), 4.25 – 4.16 (m, 1H), 2.77 – 2.63 (m, 2H), 2.49 – 2.32 (m, 2H), 2.14 – 1.97 (m, 1H); ¹³C NMR (101 MHz, CDCl₃)

δ 178.9, 139.7, 127.4, 126.2, 125.8, 125.0, 121.7, 66.7, 39.4, 33.6, 27.9; IR (Neat Film, NaCl) 3098, 2994, 2909, 1766, 1482, 1454, 1374, 1201, 1183, 1151, 1094, 1022, 967, 862, 832, 772, 696, 673, 616 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₁H₁₃O₂S [M+H]⁺: 209.0631, found 209.0637; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralcel OD-H column, $\lambda = 254$ nm, t_R (min): major = 4.76, major = 5.32.

(*S*)-3-((2*E*,4*E*)-5-phenylpenta-2,4-dien-1-yl)dihydrofuran-2(3*H*)-one (3p): Product 3p was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (34.7 mg, 0.152 mmol, 76% yield); 83% *ee*; $[\alpha]_D^{25}$ 34.815 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.31 (dd, *J* = 8.5, 6.8 Hz, 2H), 7.25 – 7.19 (m, 1H), 6.75 (ddd, *J* = 15.7, 10.4, 0.8 Hz, 1H), 6.50 (d, *J* = 15.7 Hz, 1H), 6.30 (ddq, *J* = 15.2, 10.4, 1.1 Hz, 1H), 5.85 – 5.69 (m, 1H), 4.35 (td, *J* = 8.8, 3.1 Hz, 1H), 4.21 (td, *J* = 9.3, 6.9 Hz, 1H), 2.75 – 2.62 (m, 2H), 2.44 – 2.33 (m, 2H), 2.03 (dtd, *J* = 12.8, 9.6, 8.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 137.3, 133.7, 131.8, 130.2, 128.7, 128.5, 127.6, 126.4, 66.7, 39.4, 33.5, 28.0; IR (Neat Film, NaCl) 3748, 3671, 3022, 2910, 2358, 1769, 1684, 1652, 1595, 1558, 1540, 1506, 1489, 1448, 1374, 1309, 1157, 1023, 992, 749, 693, 668, 625 cm⁻¹; HRMS (MM) *m*/*z* calc'd for C₁₅H₁₇O₂ [M+H]⁺: 229.1223, found 2229.1227; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralcel OD-H column, λ = 280 nm, t_R (min): major = 7.08, major = 7.73.

(*S*,*E*)-3-(5-phenylpent-2-en-1-yl)dihydrofuran-2(3*H*)-one (3q): Product 3q was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (44.4 mg, 0.19 mmol, 96% yield); 87% *ee*; $[\alpha]_D^{25}$ 20.90 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (m, 2H), 7.21 – 7.14 (m, 3H), 5.55 (dtt, *J* = 14.8, 6.7, 1.3 Hz, 1H), 5.36 (dtt, *J* = 15.3, 6.9, 1.4 Hz, 1H), 4.24 (td, *J* = 8.8, 3.3 Hz, 1H), 4.15 (td, *J* = 9.1, 6.9 Hz, 1H), 2.68 (dd, *J* = 8.4, 6.9 Hz, 2H), 2.62 – 2.44 (m, 2H), 2.42 – 2.29 (m, 2H), 2.28 – 2.14 (m, 2H), 1.87 (dtd, J = 12.8, 9.5, 8.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 179.2, 141.8, 133.1, 128.6, 128.4, 126.6, 125.9, 66.7, 39.3, 35.8, 34.3, 33.2, 27.6; IR (Neat Film, NaCl) 3520, 2918, 1770, 1602, 1496, 1454, 1374, 1297, 1251, 1209, 1171, 1149, 1084, 1024, 972, 906, 843, 748, 701, 666 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₅H₁₉O₂ [M+H]⁺: 231.1384, found 231.1384; SFC Conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 5.84, major = 6.29.

(*S*)-3-allyldihydrofuran-2(3*H*)-one (3r): Product 3r was synthesized according to the General Procedure 4, but with a doubled catalyst loading (10 mol% CuCl₂, 12 mol% *L8*, 26 mol% LiHMDS). The crude product was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (24.2 mg, 96% yield, 80% ee); ¹H NMR (300 MHz, CDCl₃) δ 5.78 (ddt, *J* = 16.9, 10.1, 6.9 Hz, 1H), 5.20 – 5.05 (m, 2H), 4.38 – 4.28 (m, 1H), 4.20 (td, *J* = 9.2, 6.9 Hz, 1H), 2.71 – 2.53 (m, 2H), 2.43 – 2.18 (m, 2H), 2.08 – 1.91 (m, 1H). All characterization data match those reported.¹⁸ The purified product was converted to the corresponding methyl acrylate species via cross metathesis for SFC analysis (see Product Transformations).

(*S,E*)-3-(2-methyl-3-phenylallyl)dihydrofuran-2(3*H*)-one (3s): Product 3s was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (37.6 mg, 0.17 mmol, 87% yield); 89% *ee*; $[\alpha]_D^{25}$ 57.81 (*c* 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 2H), 7.26 – 7.17 (m, 3H), 6.34 (s, 1H), 4.38 (td, *J* = 8.8, 3.2 Hz, 1H), 4.24 (td, *J* = 9.2, 6.9 Hz, 1H), 2.91 – 2.74 (m, 2H), 2.38 (dddd, *J* = 12.8, 8.5, 6.9, 3.3 Hz, 1H), 2.32 – 2.20 (m, 1H), 2.13 – 1.96 (m, 1H), 1.89 (d, *J* = 1.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.4, 179.10, 137.8, 135.4, 128.9, 128.3, 127.6, 126.5, 66.7, 41.5, 38.1, 28.4, 17.6; IR (Neat Film, NaCl) 2912, 1768, 1490, 1442, 1373, 1205, 1178, 1149, 1022, 958,

920, 746, 700, 668 cm⁻¹; HRMS (MM) *m/z* calc'd for $C_{14}H_{17}O_2$ [M+H]⁺: 217.1223, found 217.1224; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralcel OD-H column, $\lambda = 254$ nm, t_R (min): minor = 4.57, major = 5.37.

(*E*)-3-(3-phenylbut-2-en-1-yl)dihydrofuran-2(3*H*)-one (3t): Product 3t was purified by column chromatography (20% EtOAc in hexanes) to provide a colorless oil (28.1 mg, 0.13 mmol, 65% yield, 20:1 E:Z); 5% *ee*; ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 4H), 7.26 (m, 1H), 5.73 (tq, *J* = 7.5, 1.5 Hz, 1H), 4.36 (td, *J* = 8.8, 3.0 Hz, 1H), 4.21 (td, *J* = 9.3, 6.8 Hz, 1H), 2.83 – 2.65 (m, 2H), 2.52 – 2.33 (m, 2H), 2.13 – 1.95 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 179.1, 143.5, 138.0, 128.4, 127.2, 125.8, 123.6, 66.7, 39.6, 29.3, 28.2, 16.3; IR (Neat Film, NaCl)2922, 2855, 1760, 1597, 1494, 1456, 1374, 1311, 1203, 1182, 1149, 1068, 1022, 960, 760, 696, 676, 666; HRMS (MM) *m/z* calc'd for C₁₅H₁₇O₂ [M+H]⁺: 217.1223, found 217.1223; SFC Conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 254 nm, t_R (min): minor = 5.09, major = 5.54.

(*S,E*)-3-(3-cyclohexylallyl)dihydrofuran-2(3*H*)-one (3v): Product 3v was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (37.3 mg, 0.18 mmol, 90% yield); 87% *ee*; $[α]_D^{25}$ 16.32 (*c* 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.48 (dd, *J* = 15.4, 6.7 Hz, 1H), 5.37 – 5.26 (m, 1H), 4.30 (td, *J* = 8.8, 3.5 Hz, 1H), 4.19 (td, *J* = 9.1, 7.0 Hz, 1H), 2.59 (qd, *J* = 9.0, 4.4 Hz, 1H), 2.50 (ddd, *J* = 14.2, 6.8, 4.5 Hz, 1H), 2.32 (dddd, *J* = 12.5, 8.9, 7.0, 3.5 Hz, 1H), 2.20 (dt, *J* = 14.8, 7.8 Hz, 1H), 2.05 – 1.86 (m, 2H), 1.67 (dddt, *J* = 19.5, 15.5, 8.6, 4.0 Hz, 5H), 1.31 – 0.96 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ, 179.2, 140.3, 123.0, 66.8, 40.8, 39.4, 33.4, 33.2, 27.7, 26.3, 26.1; IR (Neat Film, NaCl) 2923, 2850, 1773, 1483, 1448, 1375, 1300, 1258, 1202, 1180, 1157, 1024, 971, 894, 706, 663 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₃H₂₁O₂ [M+H]⁺: 209.1536, found

209.1537; SFC Conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): major = 3.32, minor = 3.53.

(*S*,*Z*)-3-(3-phenylallyl)dihydrofuran-2(3*H*)-one (3u): Product 3u was purified by column chromatography (25% EtOAc in hexanes) to provide a colorless oil (34.0 mg, 0.17 mmol, 84% yield); 73% *ee*; $[\alpha]_D^{25}$ 53.19 (*c* 0.80, CHCl₃); **Z isomer** (for E isomer, see data for **3a**): ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 2H), 7.26 (m, 3H), 6.59 (dt, *J* = 11.7, 1.9 Hz, 1H), 5.64 (dt, *J* = 11.5, 7.2 Hz, 1H), 4.31 (td, *J* = 8.8, 3.0 Hz, 1H), 4.19 (td, *J* = 9.3, 6.8 Hz, 1H), 2.90 (dddd, *J* = 15.0, 6.8, 4.5, 1.9 Hz, 1H), 2.68 (dtd, *J* = 9.9, 8.7, 4.4 Hz, 1H), 2.57 (dddd, *J* = 14.9, 9.0, 7.3, 1.7 Hz, 1H), 2.37 (dddd, *J* = 12.8, 8.7, 6.8, 2.9 Hz, 1H), 1.94 (dtd, *J* = 12.8, 9.8, 8.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.9, 137.0, 131.9, 128.8, 128.5, 128.1, 127.1, 66.7, 39.6, 29.0, 28.2; IR (Neat Film, NaCl) 3016, 2912, 1766, 1598, 1494, 1448, 1374, 1308, 1208, 1150, 1074, 1023, 967, 768, 702 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₃H₁₅O₂ [M+H]⁺: 203.1067, found 203.1062; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 254 nm, t_R (min): major = 3.06, minor= 3.43.

Procedures and Spectroscopic Data for Product Transformations

(2*S*,3*S*)-3-cinnamyltetrahydrofuran-2-ol (4): Adapted from a previously reported procedure.¹⁹ To a solution of lactone (12.4 mg, 0.061 mmol, 1.0 equiv) in dichloromethane (0.4 mL) at -78 °C was added diisobutylaluminium hydride (12µL, 0.067 mmol, 1.1 equiv) in dichloromethane (2.2 mL) dropwise. The reaction was allowed to stir for 30 min at -78 °C. The reaction was quenched slowly with MeOH, and then saturated aqueous potassium tartrate solution was added and the reaction was allowed to warm to room temperature. After 2 h, the layers were separated, and the aqueous layer was extracted 3 times with

diethyl ether. The organic layers were combined, washed with brine, dried over sodium sulfate, and concentrated. The crude product was purified by column chromatography to afford product 4 as a white solid (11.9 mg, 0.058 mmol, 95 % yield, 68:32 anti:syn); $\left[\alpha\right]_{D}^{25}$ 4.20 (c 0.75, CHCl₃); major, anti: ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.20 (m, 4H), 7.17 - 7.11 (m, 1H), 6.39 - 6.33 (m, 1H), 6.15 - 6.07 (m, 1H), 5.19 (d, J = 1.5 Hz, 1H), 4.00 (td, J = 8.0, 6.6 Hz, 1H), 3.91 (td, J = 8.1, 5.5 Hz, 1H), 2.45 (dtd, J = 14.2, 7.1, 1.4 Hz, 1H), 2.34 – 2.18 (m, 3H), 2.18 – 2.06 (m, 1H), 1.65 – 1.55 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 137.5, 131.8, 128.67, 128.66, 127.3, 126.2, 102.7, 67.1, 46.1, 35.8, 29.7. **minor, syn:** ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.20 (m, 4H), 7.17 – 7.11 (m, 1H), 6.43 -6.38 (m, 1H), 6.24 - 6.16 (m, 1H), 5.30 (d, J = 4.4 Hz, 1H), 4.06 (ddd, J = 9.3, 8.2, 2.7Hz, 1H), 3.78 (ddd, J = 9.4, 8.2, 7.3 Hz, 1H), 2.45 (dtd, J = 14.2, 7.1, 1.4 Hz, 1H), 2.18 -2.06 (m, 1H), 1.98 (dtd, J = 12.0, 7.5, 2.7 Hz, 1H), 1.76 (tt, J = 11.8, 9.2 Hz, 1H), 1.64 – 1.45 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 137.7, 131.1, 128.7, 128.1, 127.2, 126.1, 98.4, 67.4, 44.7, 32.2, 28.8. major, anti and minor, syn: IR (Neat Film, NaCl) 3390, 3024, 2936, 2892, 1598, 1494, 1500, 1266, 1119, 1015, 967, 912, 744, 694 cm⁻¹; HRMS (MM) m/z calc'd for C₁₃H₁₅O [M-OH⁻]⁺: 187.1117, found 187.1119.

ethyl 2-((2*R*,3*S*)-3-cinnamyltetrahydrofuran-2-yl)acetate (5): In a flame-dried round bottom flask under argon was added NaH (3.5 mg, 0.0874 mmol, 1.5 equiv) and THF (0.3 mL). To the resulting suspension was added triethyl phosphonoacetate (17.3 μ L, 0.0874 mmol, 1.5 equiv) slowly. After 30 min, the reaction was cooled to 0 °C and lactol 4 (11.9 mg, 0.058 mmol, 1.0 equiv) in THF (0.6 mL) was added slowly. The reaction was allowed to warm to room temperature overnight. The reaction was subsequently quenched with saturated aqueous NaHCO₃, and extracted with ethyl acetate three times. The organic layers were then combined, dried over Na₂SO₄, and concentrated. The crude oil was purified by column chromatography to afford product **5** (13.4 mg, 0.049 mmol, 84% yield, 95:5 anti:syn); 93% ee; $[\alpha]_D^{25}$ 18.74 (*c* 0.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.27 (m, 4H), 7.24 – 7.18 (m, 1H), 6.47 – 6.39 (m, 1H), 6.18 (dt, J = 15.8, 7.2 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.99 (ddd, J = 7.9, 6.6, 4.8 Hz, 1H), 3.92 – 3.81 (m, 2H), 2.64 – 2.46 (m, 2H), 2.40 (dddd, J = 14.1, 7.1, 5.7, 1.4 Hz, 1H), 2.25 (dddd, J = 14.0, 8.4, 7.1, 1.4 Hz, 1H), 2.18 – 1.97 (m, 2H), 1.76 – 1.64 (m, 1H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 137.5, 131.7, 128.7, 128.2, 127.3, 126.1, 80.3, 67.3, 60.7, 44.4, 40.2, 36.3, 32.1, 14.3; IR (Neat Film, NaCl) 3058, 3024, 2978, 2936, 2873, 1736, 1598, 1478, 1495, 1449, 1368, 1302, 1261, 1204, 1158, 1070, 1032, 967, 843, 805, 746, 694, 670, 652 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₇H₂₃O₃ [M+H]⁺: 275.1642, found 275.1649. Please note that the NMR data listed is for the major diastereomer. SFC Conditions: 15% IPA, 2.5 mL/min, Chiralcel OJ-H column, $\lambda = 254$ nm, t_R (min): minor= 3.07, major= 3.39.

(*S*)-2-cinnamylbutane-1,4-diol (6): Product 6 was synthesized according to a slightly modified, previously reported procedure.²⁰ To a suspension of lithium aluminum hydride (3.57 mg, 0.094 mmol, 1.0 equiv) in diethyl ether (0.5 mL) was added a solution of lactone **3a** (19.0 mg, 0.094 mmol, 1.0 equiv) in diethyl ether (0.4 mL), maintaining reflux. Then, the reaction was heated to 40 °C and refluxed for 3 h. The reaction was then quenched by sequentially adding methanol, water, and 2M HCl. Then, brine was added and the aqueous layer was extracted five times with ethyl acetate. The crude diol was then purified by column chromatography to afford the desired product **6** as a clear oil (18.4 mg, 0.089 mmol, 95% yield); 94% ee $[a]_D^{25}$ -10.61 (*c* 0.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 4H), 7.23 – 7.17 (m, 1H), 6.46 – 6.34 (m, 1H), 6.18 (dt, *J* = 15.8, 7.3 Hz, 1H), 3.78 (ddd, *J* = 10.8, 6.4, 4.5 Hz, 1H), 3.72 – 3.44 (m, 5H), 2.31 – 2.13 (m, 2H), 1.90 – 1.68 (m, 2H), 1.60 (dtd, *J* = 14.5, 8.0, 4.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 137.5, 131.9,

128.6, 127.2, 126.1, 66.0, 61.1, 39.7, 35.6; IR (Neat Film, NaCl) 3322, 3080, 3058, 3024, 2921, 1754, 1598, 1494, 1448, 1053, 967, 742, 694, 661 cm⁻¹; HRMS (MM) *m/z* calc'd for $C_{13}H_{19}O_2$ [M+H]⁺: 207.1380, found 207.1383. SFC Conditions: 25% IPA, 2.5 mL/min, Chiralcel OD-H column, $\lambda = 254$ nm, t_R (min): minor = 3.64, major= 4.04.

methyl (*S,E*)-4-(2-oxotetrahydrofuran-3-yl)but-2-enoate (7): Adapted from a previously reported procedure.²¹ To a solution of lactone **3r** (12.1 mg, 0.096 mmol, 1.0 equiv) and methyl acrylate (86 uL, 0.96 mmol, 1.0 equiv) in dichloromethane (0.7 mL) was added Grubbs II catalyst (4.8 mg, 0.00576 mmol, 6 mol%). The reaction was sealed and heated to 40 °C for 3 h. The crude reaction mixture was filtered with a small pad of SiO₂, and concentrated. The resulting crude oil was then purified by column chromatography to afford product **7** as a yellow oil (16.8 mg, 0.091 mmol, 95% yield); 80% ee $[\alpha]_D^{25}$ 19.52 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.91 (dt, *J* = 15.4, 7.2 Hz, 1H), 5.93 (dt, *J* = 15.6, 1.5 Hz, 1H), 4.37 (td, *J* = 8.9, 2.5 Hz, 1H), 4.28 – 4.17 (m, 1H), 3.74 (s, 3H), 2.85 – 2.66 (m, 2H), 2.46 – 2.34 (m, 2H), 2.06 – 1.91 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.1, 166.5, 144.6, 123.8, 77.2, 66.6, 51.8, 38.5, 32.9, 28.3; IR (Neat Film, NaCl) 2954, 1764, 1719, 1656, 1438, 1376, 1277, 1155, 1022, 988, 702 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₉H₁₂O₄⁺ [M+H]⁺: 185.0808, found 185.0812. SFC Conditions: 25% IPA, 2.5 mL/min, Chiralpak IC column, λ = 210 nm, t_R (min): major = 9.17, minor= 10.89.

Supporting Computational Results

To understand how variations in the optimized geometry affected single point energy calculations, we re-optimized the B3(38HF)LYP-optimized geometry (geometry B) with the B3(0HF)LYP density functional. The resulting structures (geometry A) show increased deviation from a trigonal bipyramidal geometry ($\tau_5 = 1$) towards square pyramidal geometry ($\tau_5 = 0$) (Figure S1 and Table S1).

Figure S1. Hartree-Fock dependence on L8^{NNO}•CuCl₂ (left) versus L8^{NNN}•CuCl₂ (right) geometry. Geometry A (grid): B3(0HF)LYP optimized geometry; Geometry B (filled): B3(38HF)LYP optimized geometry

Table S1. Effects of Levels of Theory on the Optimized Geometry of L8•CuCl₂.

L8 ^{NNO} ·CuCl₂	geometry A	geometry B	L8 ^{NNN} ·CuCl ₂	geometry A	geometry B
bond lengths (Å)			bond lengths (Å)		
Cu-N1	2.16	2.07	Cu-N1	2.10	2.20
Cu-N2	2.06	2.16	Cu-N2	2.03	2.05
Cu-O	2.10	1.95	Cu-N3	2.17	2.15
Cu-Cl1	2.39	2.48	Cu-Cl1	2.62	2.62
Cu-Cl2	2.37	2.54	Cu-Cl2	2.31	2.36
bond angles (°)			bond angles (°)		
N1-Cu-N2	78	77	N1-Cu-N2	77	75
N1-Cu-O	125	174	N1-Cu-N3	160	158
N1-Cu-Cl1	108	89	N1-Cu-Cl1	88	87
N1-Cu-Cl2	90	86	N1-Cu-Cl2	92	89
N2-Cu-O	90	99	N2-Cu-N3	83	83
N2-Cu-Cl1	96	122	N2-Cu-Cl1	99	103
N2-Cu-Cl2	165	120	N2-Cu-Cl2	151	143
O-Cu-Cl1	127	97	N3-Cu-Cl1	96	98
O-Cu-Cl2	89	92	N3-Cu-Cl2	105	108
Cl1-Cu-Cl2	97	114	CI1-Cu-CI2	108	109
τ ₅	0.64	0.86	τ ₅	0.15	0.24

Table S2. Effects of Levels of Theory on the Energy Barrier.

entry	density functional	geometry	solvent correction	E _{NNO} (Hartree)	E_{NNN} (Hartree)	ΔE (Hartree)	ΔE (kcal/mol)
1	B3(0HF)LYP	Geometry A	none	-3987.8133	-3987.7866	0.0267	16.8
2	B3(38HF)LYP	Geometry A	none	-3997.8498	-3997.8189	0.0309	19.4
3	BP86	Geometry B	none	-3994.4699	-3994.4422	0.0277	17.4
4	TPSSh	Geometry B	none	-3994.2266	-3994.1974	0.0292	18.3
5	B3LYP	Geometry B	none	-3993.0735	-3993.0411	0.0324	20.3
6	B3(0HF)LYP	Geometry B	none	-3987.8063	-3987.7774	0.0289	18.1
7	B3(10HF)LYP	Geometry B	none	-3990.4324	-3990.4018	0.0306	19.2
8	B3(38HF)LYP	Geometry B	none	-3997.8647	-3997.8289	0.0358	22.5
9	BP86	Geometry B	CPCM	-3994.6932	-3994.6685	0.0247	15.5
10	TPSSh	Geometry B	CPCM	-3994.4522	-3994.4265	0.0257	16.1
11	B3LYP	Geometry B	CPCM	-3993.2977	-3993.2728	0.0249	15.6
12	B3(0HF)LYP	Geometry B	CPCM	-3988.0281	-3988.0059	0.0222	13.9
13	B3(10HF)LYP	Geometry B	CPCM	-3990.6555	-3990.6321	0.0234	14.7
14	B3(38HF)LYP	Geometry B	CPCM	-3998.0902	-3998.0591	0.0311	19.5

Using the two optimized structures, we examined the Hartree-Fock dependence on the energy difference between $L8^{NNO} \cdot CuCl_2$ and $L8^{NNN} \cdot CuCl_2$ ($\Delta E \equiv E_{NNN} - E_{NNO}$) (Table S2). Despite $L8^{NNO} \cdot CuCl_2$ exhibiting a modest structural variation between different

functionals, the energy difference between NNO vs. NNN coordination between the different geometries remains relatively small (entries 1 and 6, or entries 2 and 8). Additionally, within the same geometry, increasing the amount of Hartree-Fock exchange increases the energy gap between NNO/NNN coordination (entries 1 and 2; entries 3-5, or entries 5-8); this observation is maintained for calculations with solvent correction (entries 9-11, or entries 11-14). Solvent correction also reduces the energy separation between the two coordination modes. As discussed in the manuscript, similar energy differences between L8^{NNO} and L8^{NNN} are observed upon removal of Cu^{II}Cl₂, suggesting electronic differences between Cu-O and Cu-N bonding do not play a major role in determining the ligand binding and are likely secondary to steric contributions. Indeed, by comparing both electronic energy and Gibbs free energy, we found steric contributions enforce L8^{NNO} coordination mode for a series of possible copper intermediates (Table S3).

 Table S3. Steric Preference for L8^{NNO} Coordination Across Different Possible

 Intermediates.

entry	geometry	E _{NNO} (Hartree)	E _{NNN} (Hartree)	ΔE (Hartree) ΔE	(kcal/mol)	G _{NNO} (Hartree)	G _{NNN} (Hartree)	ΔG (Hartree)	∆G (kcal/mol)
without s	olvent correct	ion							
1	L8∙Cu [#] Cl₂	-3997.8647	-3997.8289	0.0358	22.5	-3997.4815	-3997.4457	0.0357	22.5
2	L8∙Cu [∥] Cl	-3537.3202	-3537.2842	0.0360	22.7	-3536.9324	-3536.8956	0.0368	23.2
3	L8∙Cu″	-3076.6231	-3076.6029	0.0202	12.7	-3076.2324	-3076.2123	0.0201	12.7
4	L8∙Cu ^l Cl₂ ^ª	n.a	n.a	n.a	n.a	n.a	n.a	n.a	n.a
5	L8∙Cu ^I CI	-3537.2750	n.a ^b	n.a	n.a	-3536.8937	n.a	n.a	n.a
6	L8∙Cu [/]	-3076.7185	-3076.6810	0.0375	23.6	-3076.3314	-3076.2943	0.0370	23.3
with solv	ent correction								
8	L8∙Cu [#] Cl₂	-3998.0902	-3998.0591	0.0311	19.5	-3997.7070	-3997.6759	0.0310	19.5
9	L8∙Cu [∥] Cl	-3537.3972	-3537.3682	0.0290	18.3	-3537.0094	-3536.9796	0.0298	18.8
10	L8∙Cu″	-3076.6523	-3076.6288	0.0235	14.8	-3076.2616	-3076.2382	0.0234	14.8
11	L8∙Cu ^l Cl₂ ^ª	n.a	n.a	n.a	n.a	n.a	n.a	n.a	n.a
12	L8∙Cu ^I CI	-3537.4968	n.a ^b	n.a	n.a	-3537.1155	n.a	n.a	n.a
13	L8∙Cu′	-3076.7939	-3076.7650	0.0289	18.2	-3076.4068	-3076.3783	0.0284	17.9

(a) This structure failed to converge; dissociation of chloride was energetically favorable during the optimization cycles (b) The benzamide moiety dissociated in the optimized structure, resulting a T-shaped copper complex with a bidentate **L8** ligand.

The electronic effect of Cu-O vs. Cu-N coordination is hinted at, however, by comparing L2 and L8. Removing $Cu^{II}Cl_2$ from L8•CuCl₂ leads to a reduced energy gap (NNO vs. NNN) in both gas phase and solvent corrected calculations. In contrast, removing $Cu^{II}Cl_2$ from L2•CuCl₂ increases the energy barrier (Table S4). The C-O bond appears to be favored over the C-N bond for L8•CuCl₂ in THF, but the opposite holds true for L2•CuCl₂.

Table S4. DFT Calculation of L2•CuCl₂ complex^a.

(a) Obtained using a B3LYP density functional with 38% Hartree-Fock exchange. (b) Ligand coordination geometry was obtained by removing $CuCl_2$ from the optimized geometry of the corresponding complex.

Spin Quantification Experiment

 $50.0(2) \text{ mg of CuSO}_4 \cdot 5\text{H}_2\text{O} (0.2 \text{ mmol})$ was added to a 20 mL scintillation vial and dissolved in ca. 3 mL of 20% glycerol 80% water mixture. The solution was then transferred to a 10 mL volumetric flask and diluted accordingly to afford a 20 mM stock solution; calibration standards were then prepared from the stock solution. Briefly, the 1 mM and the 2 mM calibration standard were prepared directly from the stock solution. The remaining standards were prepared by diluting the 1 mM or 2 mM solution once more using volumetric pipettes and volumetric flasks of varying sizes. The error associated with concentration is estimated to be $\leq 2\%$. Given its relatively small size compared to other sources of error, we have excluded this random error from further consideration and have assumed the concentration to be absolute.

77K X-band EPR spectra were then obtained on a variety of samples with variable Cu^{II} concentrations at 0.5 mW microwave power. A linear baseline correction was performed on the resulting EPR spectra to give a zero baseline. Double integration was performed from 260 to 340 mT. The end point of integration was chosen to minimize any higher-order baseline contribution; we found this results in a 2% definition error to the double integrated intensity of the analyte. Moreover, we collected multiple spectra for a selected number of samples by first removing the sample dewar from the EPR resonator and then collecting a new set of spectra. We estimate instrument variations and the operator errors contribute 3000 to the total integrated intensity. The calibration curve and relevant statistics have been reported in Figure S2.

Three batches of L8•CuCl₂ were prepared independently using Method C and diluted to 2.1 mM in Cu. For ESI-MS (negative ion mode), this solution was further diluted with acetonitrile. HRMS (MM) m/z calc'd for C₂₉H₂₂Cl₂CuN₃O₂ [M+H]⁻ = 577.0385, found 577.0364. An aliquot of the sample was loaded into a 4.0 mm standard quartz Norell EPR tube and immediately immersed in liquid nitrogen to avoid sample decomposition. Rapid freezing also ameliorates the adverse effect from the non-glassiness of THF, as we found preparing the complex in the glassy 2-MeTHF solvent led to a yellow solution with a different EPR spectrum (Figure S3). 2 mL of the same solution of each sample was then loaded into a 1 cm borosilicate cuvette to obtain its absorption spectrum. All three samples gave optical spectra similar to that reported herein (Figure S4) and the manuscript, albeit

small variations exist. As a result, we estimate a 5% error associated with the concentrations of the analyte (± 0.1 mM).

Three **L8-CuCl₂** samples give double integrated intensity of 3.00×10^5 , 2.87×10^5 , and 2.68×10^5 . The averaged concentration was 1.81 mM with a standard deviation of 0.1 mM. Moreover, combing various sources of error with standard error of regression, standard error of the slope, and the standard error of the intercept resulted in a 6 % error associated with the calibration method described herein. Adding calibration error and the standard deviation in quadrature, we report the average concentration of monomeric, divalent copper in **L8-CuCl₂** to be 1.81 (± 0.14) mM.

Additionally, we quantified the amount of monomeric, divalent copper after the addition of 1.5 equivalents of silyl ketene acetal **2** (Figure 2, black dotted line) and found the concentration to be $0.29 (\pm 0.02)$ mM.

Figure S2. Calibration Curve for Spin Quantification.

Figure S3. 77 K EPR Spectrum of L8•CuCl₂ in 2-MeTHF.

Figure S4. Absorption Spectrum of L8•CuCl₂.

Preliminary Evidence for the Dissociation of Benzamide Moiety Upon Reduction

Figure S5: IR Spectra.

Compared to that of the free ligand, the pyridine ring bending mode shifted from 748 to 756 cm⁻¹, indicating the coordination of pyridine to copper center. ²² For L8•CuCl₂ (blue trace) we consistently noted high transmittance. Upon adding silyl ketene acetal **2**, we observed the reappearance of amide bands at 1683, 1669, and 1646 cm⁻¹. A ketone band was also observed at 1774 cm⁻¹. The pyridine remained bound to the copper center as the ring bending mode occurred at 755 cm⁻¹. Interestingly, we observed an intense ring C-H bend from the phenyl moiety. These results suggest that the benzamide moiety may have dissociated upon addition of silyl ketene acetal **2**.

References

- Oisaki, K.; Suto, Y.; Kanai, M.; Shibasaki, M.; J. Am. Chem. Soc. 2003, 125, 5644– 5645.
- (a) Neese, F. The ORCA program system. *WIREs. Comput. Mol. Sc.* 2012, *2*, 73-78 (b) Neese, F. Software update: the ORCA program system, version 4.0. *WIREs. Comput. Mol. Sc.* 2017, *8*, e1327.

- (a) Solomon, E. I.; Szilagyi, R. K.; DeBeer George, S.; Basumallick, L. Chem. Rev.
 2004, 104, 419–458. (b) Szilagyi, R. K.; Metz, M.; Solomon, E. I. J. Phys. Chem.
 A. 2002, 106, 2994–3007.
- Krska, S. W.; Hughes, D. L.; Reamer, R. A.; Mathre, D. J.; Sun, Y.; Trost, B. M. J. Am. Chem. Soc. 2002, 124, 43, 12656–12657.
- Chen, H. -Y.; Hu, Z. -Y.; Tang, C. -P.; Quinn, T. J.; Feng, Y.; Yao, S.; Ye, Y.; *Tetrahedron Letters*, 2013, 54, 4250–4253.
- 6. Trost, B. M.; Yong, Z.; Chem. Eur. J. 2011, 17, 2916–2922
- Rexiti, R.; Lu, J.; Wang, G.; Sha, F.; Wu, X. –Y. *Tetrahedron: Asymmetry* 2016, 27, 923–929..
- Guangyou, Z.; Yuquing, L.; Zhaohui, W.; Nohira, H.; Hirose, T. *Tetrahedron:* Asymmetry 2003, 14, 3297–3300.
- Ouali, A.; Taillefer, M.; Spindler, J. –F.; Jutand, A. Organometallics, 2007, 26, 65– 74.
- Bouziane, A.; Hélou, M.; Carboni, B.; Carreaux, F.; Demerseman, B.; Bruneau, C.; Renaud, J.-L. *Chem. Eur. J.* **2008**, *14*, 5630–5637.
- 11. Fuchter, M. J.; Levy, J.-N. Org. Lett. 2008, 10, 4919-4922.
- 12. Trost, B. M.; Rao, M.; Dieskau, A. P. J. Am. Chem. Soc. 2013, 135, 18697–18704.
- Falciola, C. A.; Tissot-Crosset, K.; Reyneri, H.; Alexakis, A. Adv. Synth. Catal.
 2008, 350, 1090–1100.
- 14. Lölsberg, W.; Ye, S.; Schmalz, H.-G. Adv. Synth. Catal. 2010, 352, 2023-2031.
- 15. Le, H.; Kyne, R. E.; Brozek, L. A.; Morken, J. P. Org. Lett. 2013, 15, 1432-1435.
- Cormier, M.; Ahmad, M.; Maddaluno, J.; de Paolis, M.; Organometallics, 2017, 36, 4920–4927.
- Delvos, L. B.; Vyas, D. J.; Oestreich, M. Angew. Chem. Int. Ed. 2013, 52, 4650– 4653.
- Meletis, P.; Patil, M.; Thiel, W.; Frank, W.; Braun, M. Chem. Eur. J. 2011, 17, 11243–11249
- Lacharity, J. J.; Fournier, J.; Lu, P.; Mailyan, A. K.; Herrmann, A. T. Zakarian, A. J. Am. Chem. Soc. 2017, 139, 132721–13275.
- 20. Kocieński, P.; Jarowicki, K.; Marczak, S.; Synthesis, 1991, 1191-1200.

- Starkov, P.; Moore, J. T.; Duquette, D. C.; Stoltz, B. M.; Marek, I. J. Am. Chem. Soc. 2017, 139, 9615–9620.
- 22. Bowmaker, G.A.; Di Nicola, C.; Pettinari, C.; Skelton, B.W.; Somers, N.; White, A.H. *Dalton Trans.*, **2011**, *40*, 5102-5115

SFC traces

α-Allyl Lactones

Enantioenriched 3b

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.397	BV	0.2824	1.82289e4	1030.21924	49.6594
2	11.345	VBA	0.3054	1.84789e4	956.28119	50.3406

Enantioenriched 3c

Racemic 3d

Enantioenriched 3d

Racemic 3e

Enantioenriched 3e

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	5.484	MM	0.1372	1.43503e4	1743.43298	94.5284
2	6.929	MM	0.1522	830.64697	90.97778	5.4716

Racemic 3f

Enantioenriched 3f

Racemic 3g

Enantioenriched 3g

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.027	BV	0.1963	1.14860e4	928.63049	50.2484
2	8.524	VB	0.2071	1.13725e4	855.64130	49.7516

Enantioenriched 3h

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	~
1	7.899	MM	0.2087	1.54716e4	1235.65808	96.5934
2	8.413	MM	0.1896	545.65204	47.97438	3.4066

Racemic 3i

Enantioenriched 3i

Racemic 3j

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	5.297	BB	0.1159	9568.44824	1269.50452	93.7769
2	5.899	BB	0.1270	634.96442	78.00102	6.2231

Racemic 3k

Enantioenriched 31

Туре	Width	Area	Height	Area
	[min]	[mAU*s]	[mAU]	90
-				
BV	0.1351	1.58564e4	1945.21069	52.3778
VB	0.1294	1.44167e4	1800.09290	47.6222
	Type - BV VB	Type Width [min] BV 0.1351 VB 0.1294	Type Width Area [min] [mAU*s] BV 0.1351 1.58564e4 VB 0.1294 1.44167e4	Type Width Area Height [min] [mAU*s] [mAU] BV 0.1351 1.58564e4 1945.21069 VB 0.1294 1.44167e4 1800.09290

Enantioenriched 3m

Racemic 3n

Enantionenriched 3n

Racemic 30

30

Racemic 3p

Enantioenriched 3q

Racemic 3s

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	4.565	MM	0.1019	5832.82715	953.85663	94.3734
2	5.365	MM	0.1086	347.75986	53.35968	5.6266

Racemic 3t

Enantioenriched 3t

* the two additional peaks in both the racemic and chiral traces for 3v correspond to the minor E-isomer product.

Racemic 3v

Enantioenriched 3v

Product Transformations

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	3.059	BB	0.0695	841.17938	183.38898	49.9066
2	3.383	BV	0.0775	844.32831	171.27727	50.0934

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.068	MF	0.0739	69.45084	15.67137	4.2790
2	3.389	MF	0.0785	1553.61877	329.98630	95.7210

Racemic 6

Enantioenriched 6

Racemic 7

Enantioenriched 7

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	9.169	MM	0.2799	2052.36890	122.21217	89.7345
2	10.888	MM	0.3218	234.78865	12.15906	10.2655

Synthetic Utility of α -allyl γ -butyrolactones

In addition to the product transformations reported in the paper, there are a number of other transformations reported in the literature that lead to very useful products. Below are some examples:

J. Chem. Soc. Perkin Trans. 1985, 2093–2100.

Chiral lactols such as **4** can also be converted to acyclic molecules possessing propargylic stereocenters (*Org. Lett.* **2012**, *14*, 3648–3651) or allylic stereocenters (*J. Am. Chem. Soc.* **2017**, *139*, 13272–13275) without loss of enantiomeric excess. In addition, the high levels of enantiomeric excess can also be retained under mild lactone ring-opening reactions. Zhang and coworkers (ACIE, **2013**, *52*, 5807–5812) reported a ring opening with a Weinreb amide and subsequent addition of ethylmagnesium bromide to form α -chiral ketones with full retention of enantiomeric excess. Koert and coworkers also demonstrated that an α -chiral γ -butyrolactone can undergo ring opening of the lactone with HBr without loss of stereochemistry: *Chem. Eur. J.* **2013**, *19*, 7423–7436. For an example with HCl see: *Helv. Chim. Acta*, **1979**, *62*, 474–480.

¹³C NMR (101 MHz, CDCl₃) of compound L16

Infrared spectrum (Thin Film, NaCl) of compound SI2

L

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound L7

S91

S94

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound L8

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound L9

 ^{13}C NMR (101 MHz, CDCl₃) of compound L10

S107

S109

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound L22

¹H NMR (400 MHz, CDCl₃) of compound **1m**

¹H NMR (500 MHz, CDCl₃) of compound 1e

S118

¹⁹F NMR (282 MHz, CDCl₃) of compound 1i

Infrared spectrum (Thin Film, NaCl) of compound SI4

160.11	131.61 129.59 127.62 127.10 125.72 122.87	109.39	77.16 71.58 64.15	29.71
		1	215	

 ^{13}C NMR (101 MHz, CDCl_3) of compound SI5

¹⁹F NMR (282 MHz, CDCl₃) of compound SI5

S129

 ^{13}C NMR (101 MHz, CDCl₃) of compound 3a

¹H NMR (400 MHz, CDCl₃) of compound **3b**

S137

S138

¹H NMR (400 MHz, CDCl₃) of compound **3d**

¹³C NMR (101 MHz, CDCl₃) of compound **3e**

S145

0 Ξ 00⁻2 90⁻2 5⁻2 5⁻ 2 =≝ [-20.1 **≤**∐-70.2 m 4 ppm F-80.1 F-80.1 Ь $\begin{array}{c} e^{1} 0 \\ e^{1} \\ e^{1}$ 9 ₹**⊢**S6'0 0 16[.]0 ™78.7 - ト 39 OMe MeO ∞

¹H NMR (400 MHz, CDCl₃) of compound **3g**

S147

S149

S152

S154

¹H NMR (400 MHz, CDCl₃) of compound **31**

 $^{19}\mathrm{F}$ NMR (282 MHz, CDCl₃) of compound **31**

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound 3n

S166

S171

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound 3u

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound 3v

S178

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound **5**

¹H NMR (400 MHz, CDCl₃) of compound 6

$^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound 7

Crystal Structure for 3b:

Crystal data and structure refinement for v19036.

Identification code	v19036	
Empirical formula	C17 H16 O2	
Formula weight	252.30	
Temperature	100 K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 6.9377(5) Å	a = 90°
	b = 7.1431(5) Å	b=98.260(5)°
	c = 13.2770(10) Å	$g = 90^{\circ}$
Volume	651.14(8) Å ³	
Z	2	
Density (calculated)	1.287 g/cm ³	
Absorption coefficient	0.659 mm ⁻¹	
F(000)	268	
Crystal size	0.32 x 0.17 x 0.05 mm ³	
Theta range for data collection	3.364 to 80.143°.	
Index ranges	-8 £ h £ 8, -9 £ k £ 9, -1	16 £ 1 £ 16
Reflections collected	2467	

Independent reflections	2467 [R(int) = ?]
Completeness to theta = 67.679°	97.1 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2467 / 1 / 173
Goodness-of-fit on F ²	1.115
Final R indices [I>2sigma(I)]	R1 = 0.0339, wR2 = 0.0996
R indices (all data)	R1 = 0.0349, wR2 = 0.1006
Absolute structure parameter [Flack]	-0.13(13)
Extinction coefficient	n/a
Largest diff. peak and hole	0.163 and -0.178 e.Å $^{-3}$

	Х	у	Z	U(eq)
O(1)	-94170(30)	-49190(30)	-37017(12)	254(4)
O(2)	-113080(30)	-46280(30)	-51927(13)	277(5)
C(1)	-27370(40)	-55580(30)	-77985(18)	207(5)
C(2)	-13460(40)	-59970(40)	-83901(18)	206(5)
C(3)	-16470(40)	-56390(30)	-94593(18)	200(5)
C(4)	-2330(50)	-60820(40)	-100900(20)	242(6)
C(5)	-5780(50)	-57100(40)	-111190(20)	274(6)
C(6)	-23470(50)	-48680(40)	-115498(17)	280(6)
C(7)	-37520(40)	-44350(40)	-109595(18)	245(6)
C(8)	-34350(40)	-48180(40)	-98950(17)	211(5)
C(9)	-48730(40)	-44210(40)	-92670(17)	206(5)
C(10)	-45640(40)	-47770(40)	-82329(17)	207(5)
C(11)	-61220(40)	-43810(40)	-76283(19)	220(5)
C(12)	-59920(40)	-43400(40)	-66160(20)	235(6)
C(13)	-76880(40)	-38650(40)	-60750(20)	255(6)
C(14)	-78040(40)	-50900(40)	-51425(18)	219(5)
C(15)	-63020(40)	-47120(50)	-42066(19)	296(6)
C(16)	-73710(50)	-53270(40)	-33449(19)	308(7)
C(17)	-97060(40)	-48510(40)	-47252(18)	216(5)

Atomic coordinates ($x \ 10^5$) and equivalent isotropic displacement parameters (Å²x 10⁴) for v19036. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Bond lengths [Å] and angles [°] for v19036.

O(1)-C(16)	1.459(3)
O(1)-C(17)	1.346(3)
O(2)-C(17)	1.203(3)
C(1)-H(1)	0.9500
C(1)-C(2)	1.366(4)
C(1)-C(10)	1.428(4)
C(2)-H(2)	0.9500
C(2)-C(3)	1.428(3)
C(3)-C(4)	1.415(4)
C(3)-C(8)	1.418(4)
C(4)-H(4)	0.9500
C(4)-C(5)	1.378(4)
C(5)-H(5)	0.9500
C(5)-C(6)	1.412(5)
C(6)-H(6)	0.9500
C(6)-C(7)	1.371(4)
C(7)-H(7)	0.9500
C(7)-C(8)	1.425(3)
C(8)-C(9)	1.418(4)
C(9)-H(9)	0.9500
C(9)-C(10)	1.383(3)
C(10)-C(11)	1.463(4)
C(11)-H(11)	0.9500
C(11)-C(12)	1.334(4)
C(12)-H(12)	0.9500
C(12)-C(13)	1.503(4)
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(13)-C(14)	1.527(4)
C(14)-H(14)	1.0000
C(14)-C(15)	1.527(3)
C(14)-C(17)	1.512(4)
C(15)-H(15A)	0.9900
C(15)-H(15B)	0.9900

C(15)-C(16)	1.515(4)
C(16)-H(16A)	0.9900
C(16)-H(16B)	0.9900
C(17)-O(1)-C(16)	109.4(2)
C(2)-C(1)-H(1)	119.4
C(2)-C(1)-C(10)	121.1(2)
C(10)-C(1)-H(1)	119.4
C(1)-C(2)-H(2)	119.5
C(1)-C(2)-C(3)	121.1(2)
C(3)-C(2)-H(2)	119.5
C(4)-C(3)-C(2)	122.3(3)
C(4)-C(3)-C(8)	119.4(2)
C(8)-C(3)-C(2)	118.3(2)
C(3)-C(4)-H(4)	119.8
C(5)-C(4)-C(3)	120.5(3)
C(5)-C(4)-H(4)	119.8
C(4)-C(5)-H(5)	120.0
C(4)-C(5)-C(6)	120.1(3)
C(6)-C(5)-H(5)	120.0
C(5)-C(6)-H(6)	119.6
C(7)-C(6)-C(5)	120.8(2)
C(7)-C(6)-H(6)	119.6
C(6)-C(7)-H(7)	119.9
C(6)-C(7)-C(8)	120.1(3)
C(8)-C(7)-H(7)	119.9
C(3)-C(8)-C(7)	119.0(2)
C(9)-C(8)-C(3)	119.4(2)
C(9)-C(8)-C(7)	121.5(2)
C(8)-C(9)-H(9)	119.1
C(10)-C(9)-C(8)	121.7(3)
C(10)-C(9)-H(9)	119.1
C(1)-C(10)-C(11)	122.4(2)
C(9)-C(10)-C(1)	118.3(2)
C(9)-C(10)-C(11)	119.2(3)
C(10)-C(11)-H(11)	116.3

C(12)-C(11)-C(10)	127.5(3)
C(12)-C(11)-H(11)	116.3
C(11)-C(12)-H(12)	118.6
C(11)-C(12)-C(13)	122.9(3)
C(13)-C(12)-H(12)	118.6
C(12)-C(13)-H(13A)	108.9
C(12)-C(13)-H(13B)	108.9
C(12)-C(13)-C(14)	113.3(2)
H(13A)-C(13)-H(13B)	107.7
C(14)-C(13)-H(13A)	108.9
C(14)-C(13)-H(13B)	108.9
C(13)-C(14)-H(14)	108.4
C(15)-C(14)-C(13)	116.7(3)
C(15)-C(14)-H(14)	108.4
C(17)-C(14)-C(13)	112.5(2)
C(17)-C(14)-H(14)	108.4
C(17)-C(14)-C(15)	102.19(19)
C(14)-C(15)-H(15A)	111.3
C(14)-C(15)-H(15B)	111.3
H(15A)-C(15)-H(15B)	109.2
C(16)-C(15)-C(14)	102.3(2)
C(16)-C(15)-H(15A)	111.3
C(16)-C(15)-H(15B)	111.3
O(1)-C(16)-C(15)	104.8(2)
O(1)-C(16)-H(16A)	110.8
O(1)-C(16)-H(16B)	110.8
C(15)-C(16)-H(16A)	110.8
C(15)-C(16)-H(16B)	110.8
H(16A)-C(16)-H(16B)	108.9
O(1)-C(17)-C(14)	110.8(2)
O(2)-C(17)-O(1)	121.2(2)
O(2)-C(17)-C(14)	128.0(2)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	237(10)	304(10)	222(7)	-1(7)	39(7)	23(10)
O(2)	185(9)	358(12)	291(8)	41(8)	43(7)	-7(9)
C(1)	218(14)	191(12)	202(9)	1(9)	-1(10)	-17(11)
C(2)	193(13)	173(11)	240(10)	12(9)	-9(9)	10(11)
C(3)	229(13)	149(11)	220(10)	-11(9)	27(10)	-30(11)
C(4)	271(15)	187(11)	273(11)	-19(9)	56(11)	1(13)
C(5)	354(17)	215(13)	270(11)	-49(10)	101(11)	-33(13)
C(6)	407(17)	224(12)	207(10)	-11(10)	33(10)	-57(15)
C(7)	302(15)	186(12)	229(10)	10(9)	-28(10)	-25(12)
C(8)	257(14)	146(10)	221(10)	-9(9)	10(10)	-37(12)
C(9)	192(11)	151(11)	259(11)	14(9)	-21(10)	7(10)
C(10)	206(12)	166(11)	247(10)	-1(10)	29(10)	-30(13)
C(11)	167(12)	195(12)	297(11)	39(9)	25(9)	6(11)
C(12)	187(13)	232(13)	296(11)	27(10)	66(10)	13(12)
C(13)	207(12)	264(14)	305(12)	25(10)	71(11)	18(12)
C(14)	161(13)	227(12)	276(11)	-4(10)	50(10)	18(12)
C(15)	200(13)	356(16)	318(11)	4(13)	-11(10)	18(13)
C(16)	293(16)	357(16)	254(11)	12(10)	-30(11)	67(13)
C(17)	234(13)	191(11)	225(10)	2(10)	41(9)	-32(14)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^4)$ for v19036. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	Х	у	Z	U(eq)
H(1)	-2486	-5777	-7086	25
H(2)	-158	-6549	-8085	25
H(4)	964	-6640	-9803	29
H(5)	375	-6021	-11538	33
H(6)	-2566	-4599	-12258	34
H(7)	-4940	-3878	-11261	29
H(9)	-6080	-3897	-9565	25
H(11)	-7369	-4124	-7999	26
H(12)	-4775	-4622	-6220	28
H(13A)	-8909	-4007	-6556	31
H(13B)	-7583	-2538	-5859	31
H(14)	-7687	-6429	-5344	26
H(15A)	-5105	-5459	-4223	36
H(15B)	-5956	-3368	-4150	36
H(16A)	-7178	-6681	-3207	37
H(16B)	-6908	-4620	-2715	37

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for v19036.

Coordinates for Optimized Geometries

B3(0HF)LYP Optimized L8^{NNO}•CuCl₂

С	5.84649546244608	3.80009699351144	0.35677478540613
С	5.20628526966995	3.54427414304280	-0.85151136053620
Н	4.43843795031227	2.76843330873990	-0.90835413876220
С	5.57245233271477	4.26132049922000	-1.99597840840474
Н	5.08426380468348	4.04912827253866	-2.95002940226531
С	6.58444927880399	5.21979523225337	-1.92845268989370
Н	6.88761810191443	5.75689867271473	-2.83024296532060
С	7.23429840965186	5.47277190941920	-0.71554445088301
Н	8.04419813809433	6.20414098150249	-0.66273787952742
С	6.86219041994545	4.77025442858758	0.42717089475257
С	5.30496521823870	4.16228481163829	2.70241434681085
С	4.20464883302810	4.21555948924984	3.55410647567852
Н	3.45746943449329	3.41864977965394	3.52367912547705
С	4.06813515504421	5.28043398840012	4.45448458800090
Н	3.20513152189289	5.32041239151633	5.12396366085001
С	5.04030065361813	6.28168666930179	4.50798361184927
Н	4.93656590251965	7.10682345399245	5.21717236619432
С	6.15553774358018	6.22433546221199	3.66163260937201
Η	6.93145199137887	6.99208727144098	3.71326637429685
С	6.28537861380839	5.17385945461384	2.75570481662866
С	5.61451361883679	3.09732596931170	1.67624322562103
Η	4.83689219573620	2.32362262990335	1.62166420560046
С	7.44128734641475	4.93417225745630	1.81153173151597
Η	8.21660734850250	5.70542260472605	1.87895308012207
С	6.99020539493881	2.42161896893882	2.05109037797509

С	8.04681470655706	3.54298665525527	2.30301787644251
N	9.34198340358532	3.20559310556420	1.74624823044713
N	6.81198664777545	1.53718192569435	3.18054367626867
Н	7.31744573425189	1.87555501800638	1.14618124200731
Н	8.15806025707222	3.65619677241761	3.39720925522048
С	10.35608981540664	4.04107966120902	1.98321306435662
0	10.32879068814233	5.15956749600066	2.57251240964311
С	11.67870186598739	3.53497846343068	1.46931752768328
С	12.81219652818755	4.35577804506283	1.45892617339345
С	12.88123982953077	1.75127822478929	0.59599020617176
С	14.01311177792603	3.83665616689550	0.98446690292745
Н	12.70289569921495	5.37436890327597	1.83253919876009
С	14.05101744738914	2.50967213035211	0.54380980371241
Н	12.81813121858895	0.70170982238844	0.28734594617472
Н	14.91375003066435	4.45627132189672	0.95763838319354
Н	14.97379228418060	2.06315202979394	0.16745155915373
N	11.72791642775386	2.25967329706688	1.04816085785147
С	7.76953333849433	0.65613759361462	3.36999766425075
0	8.85789374960608	0.46005013518106	2.71217330596226
С	7.56202451529443	-0.29073674850832	4.53447474624347
С	6.49076757713324	-0.14352330098897	5.42867366583204
С	8.46271336951653	-1.34796709344498	4.73296718314431
С	6.32332472641905	-1.02850528256569	6.49414479241306
Н	5.80337216894331	0.68535771923953	5.25350485451498
С	8.29242956768574	-2.23803661039940	5.79595166187977
Н	9.28675271813469	-1.44242311159463	4.02310413232512
С	7.22426313412840	-2.08342462544594	6.68408353157662
Н	5.48512663311003	-0.89645921870251	7.18457801423826

Η	9.00045801111915	-3.06021158385933	5.93278558227576
Η	7.09364084620980	-2.77780189712960	7.51863447158090
Cu	9.78120858103308	1.32888903607831	1.03240081285816
Cl	8.81554460742632	1.66004498732765	-1.12698476570414
Cl	10.77685195326325	-0.77597868178764	0.56658305264232

B3(0HF)LYP Optimized L8^{NNN}•CuCl₂

С	-2.86181484528682	-3.58940008954456	1.95054375745875
С	-3.31349561668561	-3.69892806317600	3.26250890510869
Η	-4.13201981424364	-3.06402295850537	3.60957023087454
С	-2.69166078877141	-4.59997873554681	4.13703540534236
Η	-3.03977202382283	-4.68112858726659	5.16951055772232
С	-1.61450006587853	-5.37333267302338	3.70063026890984
Η	-1.11918665003785	-6.05923485469390	4.39211883046056
С	-1.15401417694491	-5.25930197698310	2.38244463344789
Н	-0.29497713299160	-5.84023114359128	2.03926924108307
С	-1.78033160369459	-4.37729609827755	1.50634650947363
С	-3.75173736489797	-3.46521827440768	-0.30282559372406
С	-4.97750369229859	-3.45829869736675	-0.96435677423204
Н	-5.75890544455049	-2.76349384916088	-0.64721581442237
С	-5.20152493383831	-4.33602636614491	-2.03381041432141
Η	-6.16297769083989	-4.32618806709272	-2.55283331174731
С	-4.19794824599778	-5.21690234943456	-2.44008383027092
Η	-4.37365180775356	-5.89846280196543	-3.27601398450806
С	-2.95831455020654	-5.21994771719559	-1.78496612231822
Η	-2.16174467701921	-5.89328943504955	-2.11177768958318
С	-2.73457961553729	-4.35083735592329	-0.72127916470769
С	-3.37331706245782	-2.62165160380954	0.89614157692924

Η	-4.20993714530172	-2.01936063426353	1.26309702517890
С	-1.43861634905272	-4.16617112198962	0.04697374420373
Η	-0.61530612865887	-4.80049980067353	-0.29977462931757
С	-2.06870834057739	-1.74653729845357	0.60823164693850
С	-1.12654857996390	-2.64169144200025	-0.23329153273700
N	0.17807677174764	-2.07369500144812	-0.07939931260257
N	-2.09369454295182	-0.46650754392405	-0.09469085132616
Н	-1.58270398413108	-1.62011890928101	1.59414633634100
Н	-1.42476319348728	-2.47473829499704	-1.28631421994704
С	1.35017636433688	-2.68913092021165	-0.13436395652539
0	1.62217792878584	-3.91633192589262	-0.26140901416013
С	2.46882463684969	-1.67935675525097	-0.01466482661331
С	3.80702569585218	-2.06782406847755	0.08881457473474
С	3.04753423417500	0.57234335209120	0.08034955842634
С	4.78601910284615	-1.08485112427463	0.20200902682291
Н	4.02479659050468	-3.13652980921024	0.07731692490857
С	4.40177120154489	0.25960948036649	0.19958080239680
Н	2.65834052547137	1.59364133141025	0.04256709356220
Н	5.84049892387173	-1.35945818433587	0.29304536329919
Н	5.13794677710420	1.06064536626853	0.28872484545744
N	2.11506484582269	-0.38003878037524	-0.02380140843529
С	-3.02514947327033	0.48548434128828	0.13683851027035
0	-3.21524042877017	1.48258008233778	-0.58726858437059
С	-3.93226547087433	0.42024079169482	1.36293991576418
С	-5.32290435103615	0.52628181281700	1.21086131984595
С	-3.39013801733346	0.38169637034138	2.65723336046604
С	-6.16566520360415	0.54758700487333	2.32232049749550
С	-4.23537416878162	0.43692714636742	3.76952438980982

Η	-2.29879871680153	0.32988609081922	2.78194031834153
С	-5.62265894532815	0.50431892619841	3.61216165872487
Н	-7.24940273261483	0.60899672948706	2.18616275181731
Η	-3.79882607853386	0.42200923800630	4.77175867899157
Н	-6.27834421558201	0.53067053223428	4.48680812861745
Cu	0.03617643535316	-0.05242231160071	-0.01913595566441
Cl	0.18202321645312	0.27002263103041	2.57231415549656
Cl	0.29325881017386	2.02731557064579	-0.99523340875897
Н	-5.72956104448254	0.60579524254171	0.20004752957136

B3(38HF)LYP Optimized L8^{NNO}•CuCl₂

С	5.996110782131	3.901206403957	0.452079601878
С	5.423486805078	3.679827078564	-0.786061411137
Н	4.667520217538	2.920436572539	-0.904396692789
С	5.839428879551	4.428986077828	-1.882956965284
Н	5.399476923526	4.253036574871	-2.851016388804
С	6.831735664453	5.384431642849	-1.735752036232
Н	7.163768223835	5.951501965469	-2.590124163908
С	7.414576303946	5.602299341489	-0.490743626918
Н	8.200673516229	6.330040744673	-0.376741521911
С	6.993777917947	4.867261840308	0.602015616610
С	5.332116417736	4.195442603273	2.771842483688
С	4.189952214415	4.228420058479	3.549276556945
Н	3.452856064764	3.447771617348	3.456712372216
С	4.003114019401	5.262696013321	4.461957736775
Н	3.114280724597	5.286917391230	5.071525355996
С	4.963659331499	6.252329528748	4.597542301981
Н	4.821097874227	7.048346639473	5.310476614833

С	6.118926140900	6.214766956788	3.821485434612
Η	6.875332932452	6.974013361780	3.935563307494
С	6.300724842810	5.192942761987	2.907440975164
С	5.701703622593	3.161820372109	1.736566102369
Η	4.938984917382	2.402224595939	1.617074970074
С	7.504965252742	4.987214850609	2.017555170105
Η	8.243515277002	5.763153761470	2.130243426082
С	7.051091178732	2.487207621378	2.159542821071
С	8.108184864734	3.596027330405	2.468159587946
N	9.388220838187	3.236459144108	1.885942503798
N	6.821977544490	1.589070334148	3.263889240509
Η	7.405838448457	1.949687548234	1.284158346282
Η	8.208910724937	3.659528248118	3.549920834187
С	10.361555359048	4.121037817158	1.850408640231
0	10.399565897214	5.302062669248	2.245415300616
С	11.608868581047	3.583798199216	1.172962636089
С	12.662071242279	4.426011550783	0.835823368586
С	12.700918451362	1.759832401351	0.284878185249
С	13.758218129810	3.891235217255	0.188377419153
Η	12.584116608080	5.465348971456	1.092656241391
С	13.780532506528	2.533894554776	-0.098888455296
Η	12.647574982173	0.703386050431	0.099431046553
Η	14.587726990705	4.521367067434	-0.090838439002
Η	14.616384137745	2.079333196417	-0.601273669208
N	11.651231278595	2.285805536168	0.900400206884
С	7.627405417897	0.581479742613	3.340901878820
0	8.605258220891	0.274703870437	2.579248858236
С	7.379616572659	-0.398956292953	4.463387474823

С	6.188345145551	-0.405767353400	5.184974754904
С	8.369197171738	-1.322048044660	4.791669699835
С	5.982790318877	-1.321928298980	6.204409970181
Η	5.438004240614	0.320923913183	4.931620045610
С	8.166026280491	-2.233333149044	5.818485765358
Η	9.293690860245	-1.295770003667	4.242240757041
С	6.972684656387	-2.242128143675	6.525988503078
Η	5.052373773028	-1.317837679978	6.750566413328
Η	8.945645435044	-2.935109870487	6.066962597461
Η	6.815759858662	-2.953772317392	7.321352582794
Cu	10.066149178894	1.192064170598	1.672139645038
Cl	9.898255811504	-0.030829863250	-0.484324121440
Cl	11.773634426644	0.232647107470	3.284474140053

B3(38HF)LYP Optimized L8^{NNN}•CuCl₂

С	5.945807246296	3.107202192485	1.502335399784
С	5.047563103218	2.379285222991	0.746343080120
Η	4.570427748968	1.509381540430	1.165978116224
С	4.782768893749	2.760492505325	-0.566855568440
Η	4.086869742328	2.189559730583	-1.159765933959
С	5.427200654394	3.855577495917	-1.117654468486
Η	5.233426104196	4.137075308720	-2.139949337469
С	6.336557647805	4.587245397077	-0.357878209749
Η	6.854912142272	5.428320936185	-0.787303785004
С	6.589595534335	4.219687578302	0.949683852854
С	6.131121302581	4.048341019032	3.724889537997
С	5.400164393550	4.130523241191	4.894877378511
Н	4.996481378647	3.236411831315	5.340407106897

С	5.191444046219	5.368653903605	5.498534273740
Η	4.623686673517	5.430533231572	6.412629514348
С	5.716271662029	6.516700127011	4.929825554562
Η	5.556653039856	7.473481866126	5.400121563219
С	6.462717046995	6.436264224317	3.755789016043
Н	6.889172175177	7.325900480823	3.321613355388
С	6.667487660645	5.209672483760	3.155039839766
С	6.399315341173	2.796223001674	2.917976233572
Н	5.886576934930	1.938280165358	3.320996928774
С	7.505536128462	4.928401115723	1.922440944151
Н	7.964320073348	5.810445406169	1.504147969042
С	7.954403720473	2.549268354511	2.717750668989
С	8.585918378494	3.940571494812	2.491939698213
N	9.839124011004	3.694359168249	1.839109493965
N	8.807338169448	1.905572387920	3.705421189512
Η	8.024697362767	2.020819248718	1.769417397151
Η	8.820775248370	4.324926197443	3.483186188373
С	10.503389077773	4.531301676875	1.086118307732
0	10.198189428818	5.659984750505	0.656210430818
С	11.861068479588	3.961185481642	0.711618004369
С	12.675513079510	4.584082690324	-0.225750385992
С	13.412394622472	2.298779074916	1.057406317120
С	13.898658859848	4.013502710789	-0.523691904981
Η	12.324679512827	5.488339757776	-0.686782941406
С	14.278308649264	2.848471185087	0.126380041060
Η	13.646137485181	1.408922428976	1.614059182886
Η	14.550361235383	4.468644478482	-1.252684116163
Н	15.221910040494	2.373013912293	-0.078326749282

Ν	12.240182639866	2.848804009728	1.332770866814
С	8.440267134508	0.839528182969	4.427295430888
0	9.018245504531	0.445770563139	5.437324187872
С	7.248873356043	-0.027316676101	4.019906417854
С	6.262057443613	-0.328586452190	4.955173371299
С	7.192197665405	-0.629234895493	2.765958784198
С	5.213160011470	-1.176432268797	4.636283690487
С	6.155472554838	-1.500582048909	2.456242301259
Η	7.973801751575	-0.434211589525	2.048418465465
С	5.156086357629	-1.768394043887	3.380474480416
Η	4.447866698088	-1.386497338331	5.367167713507
Η	6.133377765647	-1.970328285775	1.486261451803
Η	4.347359112124	-2.437036387966	3.131266526377
Cu	10.699039502479	2.038456173134	2.682684332339
Cl	10.285273616349	0.175760174498	0.885400531079
Cl	12.394853006098	1.330995784988	4.155710819502
Н	6.336071843333	0.102080093511	5.939177444591

L8^{NNO}•Cu^{II}Cl

С	-2.29864477597556	-3.58731153675347	1.77943236012319
С	-2.82269583769079	-3.37374726294824	3.03998455660984
Н	-3.82701029132694	-2.99987819926119	3.15365994361713
С	-2.04382217012108	-3.63643097880283	4.16309273863349
Н	-2.44938709680332	-3.47113707563367	5.14708218916788
С	-0.74692298206639	-4.10027993433679	4.01747265080046
Н	-0.14471943208168	-4.29563690410795	4.88889274827863
С	-0.21644932181507	-4.30882108586799	2.74781533841623
Н	0.79471489534926	-4.66283531029266	2.63394162469672

С	-0.99152935467057	-4.05639183543934	1.63151164098629
С	-2.92616304079229	-4.59253312440871	-0.34787032253630
С	-3.99252998395378	-5.24887761103317	-0.93220535133589
Η	-4.98690011244504	-4.84233849291993	-0.85200224855454
С	-3.77399110614694	-6.43152970026845	-1.63192819871353
Н	-4.60366358941286	-6.94577359969880	-2.08758384224271
С	-2.49249588495234	-6.94476882736923	-1.75022120629525
Η	-2.32665399997289	-7.85839849088098	-2.29624914443834
С	-1.41639760879049	-6.27895395106108	-1.17106628532963
Η	-0.41716709085784	-6.66816822521432	-1.27472182824629
С	-1.63499603747155	-5.10971688084549	-0.46705376849506
С	-2.97568433355135	-3.31376200277411	0.45453102760618
Η	-3.98244513790593	-2.93275597138695	0.56820717352760
С	-0.58203704396480	-4.24267793578932	0.18890515346645
Η	0.41133384563383	-4.64878477147106	0.08119199247920
С	-2.08213664190885	-2.23680469153504	-0.24391464833591
С	-0.69289486801510	-2.86368139642553	-0.56354513184782
N	0.36692221042153	-1.91060487263126	-0.27209249000565
N	-2.74488671788774	-1.68898054010092	-1.39664796206734
Η	-1.92507385203720	-1.46753634974589	0.51266858341727
Η	-0.67044085044108	-3.10180276561733	-1.62326886176089
С	1.61955311932614	-2.25366741023266	-0.53235408887348
0	2.06711077336694	-3.31925298554036	-0.96323800365650
С	2.60760856798099	-1.14397787826392	-0.22228376371913
С	3.97615308261379	-1.35609408712208	-0.28371544611937
С	2.90837451973131	1.05351522885967	0.41418631597412
С	4.82331858165214	-0.30769085546144	0.02477240521091
Н	4.33110696729582	-2.32767490524341	-0.57037334143926

С	4.28461501589137	0.91909299177955	0.38289724643908
Η	2.41814557422152	1.97082534856068	0.68889633040352
Н	5.89124760642107	-0.44269173167419	-0.01149432966664
Η	4.91174677501937	1.75596858370341	0.63248208332725
Ν	2.10277170126038	0.04132210337837	0.11467101328793
С	-2.37582879730922	-0.52053814375877	-1.78782641323640
0	-1.46101898064543	0.24497554741815	-1.29610585003924
С	-3.11450898600925	0.06644339211880	-2.96387258960770
С	-4.02929985388284	-0.69122830042472	-3.69234886863277
С	-2.89323795160488	1.38779504640400	-3.33956362463047
С	-4.70476365630797	-0.14058928061053	-4.76836571349237
Η	-4.19563938467940	-1.71056298780792	-3.39723873440266
С	-3.57487013768014	1.94217056885130	-4.41367458322156
Η	-2.18860338374280	1.96971076043692	-2.77500200180587
С	-4.48177831719301	1.18070328920468	-5.13378625825837
Η	-5.40618613494452	-0.74153548567637	-5.32354383684020
Η	-3.39621849738451	2.96901671045815	-4.68697043539714
Η	-5.00942180853932	1.60952082777139	-5.96974728801084
Cu	0.00545942313146	0.03655931315095	-0.03965192972256
Cl	-0.28504383133412	1.95596010134205	1.17118492250833

L8^{NNN}•Cu^{II}Cl

С	-2.67185294410575	-3.74581222287031	2.27453108077461
С	-3.06931575738793	-4.00680042709489	3.57075494299466
Н	-3.85283283661694	-3.42301690421306	4.02475060338536
С	-2.44696427070843	-5.02422576005257	4.29087815398733
Η	-2.75709711908311	-5.23194717409296	5.30120386403083
С	-1.42813430987645	-5.76236113702235	3.71373496104396

Η	-0.94449163867816	-6.54376649568084	4.27550935977981
С	-1.02642601628321	-5.49888791856164	2.40634789512476
Η	-0.23330135470357	-6.07244219795091	1.95630174673321
С	-1.64935923084263	-4.49834593975350	1.68629527124923
С	-3.67620047050665	-3.32978927002081	0.11029168476090
С	-4.93438904848705	-3.22853467283452	-0.45162681167076
Η	-5.66770831297295	-2.57033422044106	-0.01772958358513
С	-5.24879805049901	-3.97862314473308	-1.58212535973805
Η	-6.22918838658975	-3.89903972405887	-2.02092519099521
С	-4.30597925933208	-4.82308220599138	-2.14256666248858
Η	-4.55227533313058	-5.40063297156872	-3.01777090162448
С	-3.03510616038500	-4.92350226480484	-1.58163903098343
Η	-2.29517931073666	-5.56889437375397	-2.02497590232605
С	-2.72405800242955	-4.18318233648698	-0.45871876215824
С	-3.19733433828898	-2.63765330556285	1.37296965781113
Η	-3.98105212788972	-2.07504395579334	1.85200522688830
С	-1.37881342875729	-4.12312322347919	0.24477697211078
Η	-0.62792313081405	-4.74000932181240	-0.22437534130799
С	-1.88435689353236	-1.79458326295217	1.12280910524273
С	-1.03118645221682	-2.60090085502976	0.11739951231122
N	0.30838694415626	-2.08461968010786	0.25108598639121
N	-1.78029546455593	-0.41340313864540	0.67150373471262
Н	-1.36075712172097	-1.85292610834637	2.07517741854809
Н	-1.37890988953541	-2.31732238050960	-0.87382880519817
С	1.36228541049567	-2.59636894857824	-0.35229231815807
0	1.50853957696851	-3.68260724759085	-0.91832485949395
С	2.53962646111336	-1.63387775496380	-0.30910533605580
С	3.81354985730786	-2.03008832926891	-0.68427614359350

С	3.26036113364100	0.51485504577369	0.11645395624669
С	4.83704758674355	-1.10073859128611	-0.64404672622021
Η	3.96189719260342	-3.04571688746704	-0.99932859282961
С	4.55970985896924	0.19511287882489	-0.23732534069413
Η	2.97425539484856	1.49598298558185	0.45250357309007
Η	5.83823789261706	-1.38071008537193	-0.92593362169702
Η	5.32816923871985	0.94588790427340	-0.19266721377797
N	2.28240123289376	-0.38212605980402	0.07595832739248
С	-2.71847730778715	0.51898098152497	0.50689799815197
0	-2.56871367798798	1.51898702453799	-0.19044973788906
С	-4.03443593177107	0.44742844671305	1.26041577357980
С	-5.24136554653843	0.55181179946546	0.57772811326328
С	-4.05237383008002	0.41938367955050	2.65065822638565
С	-6.44299044229318	0.58749772257501	1.26718321993916
С	-5.25219109321234	0.48092815102599	3.34480420258158
Η	-3.12023946706383	0.36316250169373	3.18617000573214
С	-6.45308284645493	0.55366168059024	2.65513333200770
Η	-7.37120452041003	0.65398758736066	0.72400953807077
Η	-5.24837804999414	0.47341100328718	4.42210527636135
Η	-7.38594719995050	0.59301863852258	3.19223464585292
Cu	0.21651555259459	-0.12009121619230	0.61690785022554
Cl	0.57798473507685	1.85486886433973	1.68666971388371
Н	-5.22714264053895	0.61480449310846	-0.49617888216012

L8^{NNO}•Cu^{II}

С	-2.20003181308295	-3.58141656281122	1.72980578537622
С	-2.67251170659025	-3.32934361995174	3.00377026270975
Н	-3.65591359556593	-2.91314199726360	3.14714153117363

С	-1.87098971763960	-3.62252535064683	4.10300206477360
Η	-2.23843218764835	-3.43739157413717	5.09778572469613
С	-0.60472885349447	-4.15426671431079	3.92095403156063
Η	0.01014429537774	-4.38120756723473	4.77502647253295
С	-0.12555478797295	-4.40083663195002	2.63802094037041
Н	0.85921862355543	-4.81268939171241	2.49498406884499
С	-0.92463819970519	-4.11743024259730	1.54629262543712
С	-2.94843043643592	-4.57526577975780	-0.37245965740370
С	-4.06470273752915	-5.18299709654796	-0.91404887189210
Η	-5.03702631259909	-4.73460921049958	-0.79845355355437
С	-3.92333181310996	-6.37800899044153	-1.61145150210578
Η	-4.79034393207008	-6.85805299664567	-2.03173251753519
С	-2.67177324850753	-6.95136003451505	-1.76889581398402
Н	-2.56837538446065	-7.87653817592666	-2.30931737160675
С	-1.54664585676470	-6.33459504332720	-1.23180905092176
Η	-0.57266114891930	-6.77667149151174	-1.35935545109566
С	-1.68930246370151	-5.15184006919893	-0.53090993496102
С	-2.90990145117784	-3.29237928857963	0.42404050890372
Η	-3.89223274381092	-2.86194530566553	0.56900861377191
С	-0.57288230085670	-4.34005592152370	0.09276203433866
Н	0.39279395308010	-4.80035695194838	-0.03644132355909
С	-1.99116872518845	-2.26654016195671	-0.31114534129391
С	-0.63105525125306	-2.96525398377875	-0.66173371988612
N	0.45743031916393	-2.03320732958847	-0.39268444586219
N	-2.65985303741974	-1.70343671898111	-1.45599565401705
Н	-1.77193108833925	-1.49552044742968	0.42502180056979
Н	-0.63676619703201	-3.19458136098921	-1.72334536542498
С	1.73964875486623	-2.37516859188164	-0.30482491546319

0	2.26931544120965	-3.47421997074102	-0.37510151615855
С	2.63921675571763	-1.16737232385632	-0.06047826351092
С	3.98549359402577	-1.32291769224592	0.21520771533571
С	2.82458726791228	1.13839920818660	0.07415845626445
С	4.75829236692057	-0.19740682099372	0.43401954533157
Η	4.38533721484551	-2.31849452626147	0.24810355662654
С	4.17026196068306	1.05707520385749	0.36420599559831
Η	2.32462731462718	2.08817264814794	0.00175098668223
Η	5.80691102448398	-0.29282059461052	0.65509180478838
Η	4.73792988943775	1.95444641929036	0.52676516329813
N	2.08197747370914	0.04895001015435	-0.12963616758980
С	-2.38026237370951	-0.51969701087638	-1.83089173672265
0	-1.45887734719449	0.27194819262574	-1.29910429532263
С	-3.14223687384816	0.08706140518041	-2.96493622302119
С	-4.10197125440388	-0.65855221916302	-3.64773822626402
С	-2.90811808646545	1.40123975467590	-3.35825987913847
С	-4.80645494248210	-0.10082703218331	-4.69919236048530
Η	-4.27923478681439	-1.67272432397950	-3.34256440711676
С	-3.61883922526160	1.96110733073748	-4.40929938514995
Η	-2.17228141772684	1.98245601859803	-2.83508662686981
С	-4.56854236773557	1.21205950384504	-5.08402657095423
Η	-5.54198295941802	-0.68935272415562	-5.22020137225018
Η	-3.42922109092542	2.98029966851652	-4.69969007390780
Η	-5.11895823834202	1.64476885602404	-5.90174351264737
Cu	0.17604730958700	-0.14376904246234	-0.62959785630831

L8^{NNN}•Cu^{II}

 $C \ -2.90318100304892 \ -4.04187347603220 \ 2.19279641678500$

С	-3.43224597195278	-4.21500019194389	3.45547496775815
Η	-4.33047239074837	-3.69585626757540	3.74635026585597
С	-2.80050152735493	-5.07225340945572	4.35371756449165
Η	-3.21387802184112	-5.21561855231104	5.33712409383720
С	-1.64459487311139	-5.73714474850710	3.98487905118704
Η	-1.15773145023167	-6.39620176274622	4.68274479983594
С	-1.11101586726088	-5.56349403496826	2.71018792596241
Н	-0.21492486551599	-6.08700092463947	2.42261744005074
С	-1.73976663101980	-4.72237149031189	1.81376322258851
С	-3.66783794025881	-3.96824659412816	-0.10932323330323
С	-4.85066999411354	-4.05839146980725	-0.81560233252799
Н	-5.69268093792478	-3.44268697291398	-0.54638598721093
С	-4.95294883793043	-4.95566383313711	-1.87561062147900
Н	-5.87494413320613	-5.03078410799399	-2.42577521292581
С	-3.87499669398461	-5.75218373650055	-2.21956779631602
Η	-3.95906603840380	-6.44660912599990	-3.03764224164616
С	-2.67773412637193	-5.65736455624890	-1.51402774648951
Н	-1.83532892866394	-6.26826261087565	-1.79137604796745
С	-2.57726148631347	-4.77116309201715	-0.46135775574593
С	-3.41731083907104	-3.10064990339184	1.11016042281603
Н	-4.30212046811460	-2.56017773124244	1.41502948388522
С	-1.33511692554216	-4.48224757634928	0.37126910851063
Н	-0.47650928065942	-5.06131454805896	0.06678262997375
С	-2.16838673712002	-2.16765167506992	0.91485047812034
С	-1.13548443761153	-2.95786258611577	0.08145676006216
N	0.11995411109486	-2.23676257039328	0.21655665056979
N	-2.17161671907831	-0.84510807693456	0.30499775616023
Н	-1.74230760277207	-2.05447263764764	1.90822936158648

Н	-1.43469032156489	-2.83867945125013	-0.95722037027923
С	1.30645248003891	-2.61868450782261	-0.22937550736211
0	1.72481266768451	-3.72826392233376	-0.52904493366089
С	2.24389625581416	-1.41375432032406	-0.36970737814576
С	3.60280590063494	-1.58662884526604	-0.56153422258532
С	2.46830251578818	0.88739894169005	-0.50034493605655
С	4.40784362560222	-0.47182062664978	-0.71226648727216
Η	3.98923080997298	-2.58783529342751	-0.59284793896670
С	3.83374457711137	0.78951945906383	-0.68142874387569
Η	1.97303513488029	1.84229239152896	-0.47701023952611
Η	5.46862260681872	-0.58239008953801	-0.85547390655256
Η	4.42438410191922	1.67936605971361	-0.79856615456059
N	1.69588131192471	-0.18648062121858	-0.34647240344066
С	-2.46551583024016	0.37461579828894	0.71092455436005
0	-1.64509702377751	1.26904750227492	0.32015253843435
С	-3.63949027180550	0.80332462945583	1.51922278543182
С	-4.24460638875893	2.02169045903534	1.21638377685715
С	-4.12070145052607	0.05395995676199	2.58754968631844
С	-5.33248012092667	2.46313910631366	1.94820962829467
С	-5.19359008117886	0.51114862682058	3.33656885915325
Η	-3.64610175919175	-0.86991844350673	2.85876148343815
С	-5.80839268776599	1.70969518715661	3.01187870375128
Η	-5.80297358826453	3.39752926907079	1.69617701802922
Η	-5.54643989461316	-0.06796325241184	4.17204157937704
Η	-6.64799805141629	2.05833567634167	3.58782336868797
Cu	-0.31170000498584	-0.35176161313300	-0.03318021507640
Н	-3.85339977604248	2.61130699768284	0.40774012180214

L8^{NNO}•Cu^ICl

С	-2.28511132202420	3.73106744047687	-2.57793739170622
С	-2.39692691199541	3.66956531834250	-3.95412848911881
Н	-3.24045965866246	3.17254451525446	-4.40571339663531
С	-1.40898721629852	4.23588797086717	-4.75494130483988
Η	-1.49100725985927	4.18172274331999	-5.82837663154526
С	-0.31180894655980	4.84954839097590	-4.17322248951257
Η	0.46103117168344	5.27208352875719	-4.79463299835095
С	-0.19516284237603	4.90578496221842	-2.78728505753373
Η	0.66652382536033	5.36718290382750	-2.33373700537810
С	-1.18072705865316	4.35409621774475	-1.98997316704677
С	-3.64181048810671	4.25668757882339	-0.63363748124919
С	-4.92884619416002	4.64443446107470	-0.31192066909744
Η	-5.76966693672577	4.11839391695666	-0.73355170857326
С	-5.13525635856397	5.70053981303235	0.57183479645403
Η	-6.13946180915865	5.99967616047978	0.82643029490338
С	-4.05269867748719	6.35618381183642	1.13635467082542
Η	-4.21394358381062	7.16697410881638	1.82871961929167
С	-2.75528380363397	5.96148103241855	0.82020028897557
Η	-1.91079228883584	6.45426827078866	1.27347160847765
С	-2.54947094691458	4.92097937610948	-0.06716610830456
С	-3.23185645117395	3.13865241610797	-1.56168527552451
Η	-4.08230398263132	2.64656539081825	-2.01729226841549
С	-1.21941910157753	4.33904710162747	-0.48211065865156
Η	-0.38322307078077	4.84857203936841	-0.02799636658566
С	-2.39370870058853	2.08821872551069	-0.74641813212193
С	-1.25945112942135	2.83767818776711	0.01872406193722
Ν	0.01500638741678	2.15065459183480	-0.08090034336732

Ν	-3.27681420874644	1.32783691980640	0.10086755185853
Η	-1.91027542744034	1.45109961033817	-1.48582206058455
Η	-1.55328518483392	2.89618175828730	1.06339200362918
С	0.95392335767021	2.58855299680780	0.72636464783328
0	0.93395899351823	3.57120729499236	1.50449865728361
С	2.25115138398183	1.79396718571410	0.69061630121334
С	3.42404954900810	2.35948179761651	1.19388496325031
С	3.36438276901313	-0.13171730250597	0.12405218221461
С	4.59574584885197	1.63047914461443	1.14054027045911
Η	3.37457880233114	3.34742162456042	1.61168644211115
С	4.57448939446976	0.35523835994555	0.59030640829246
Η	3.28078382634560	-1.10503614531384	-0.33291432186937
Η	5.51682508050836	2.04839035382704	1.51620780394193
Η	5.46674700972483	-0.24455596503711	0.52253403092397
N	2.24025391919386	0.56636459832514	0.18551794967972
С	-2.89965438935129	0.10702992770664	0.36895968012663
0	-1.86032909766683	-0.51206883511571	0.02163431313980
С	-3.88911486631854	-0.68208902430769	1.22013658562349
С	-5.04574157311707	-0.11013407031261	1.74807891120075
С	-3.63828064635801	-2.02527801700893	1.48725876501040
С	-5.92441037403382	-0.85859555559479	2.51626235739870
Η	-5.22975544939440	0.92817094607774	1.54057159359127
С	-4.51826705324332	-2.77937030975318	2.25169333677175
Η	-2.74011544158371	-2.45206456926334	1.07822263013634
С	-5.66682038853332	-2.20031734969847	2.77177835993231
Н	-6.81234921532667	-0.39590496061548	2.91885286465497
Н	-4.30593203390408	-3.81966999387641	2.44360443499005
Н	-6.35070177591196	-2.78320671101246	3.36880078122371

Cu 0.15965166358524	0.21642433159637	-0.97694695047009
Cl 0.98588480910045	-1.29740452595581	-2.55736746487380

L8^{NNN}•Cu^ICl

С	-2.89027943273917	-3.65764678352983	1.86190462355790
С	-3.27799145774849	-3.79508533198864	3.18229823475140
Н	-4.18892765309442	-3.33391757112034	3.52722822055543
С	-2.47922933921401	-4.51290739052547	4.06731572347038
Н	-2.77566837429579	-4.61014886407740	5.09896586236411
С	-1.29386290465066	-5.08112637001851	3.63074741711613
Η	-0.66809950980957	-5.62135632777768	4.32240954914178
С	-0.89612628217139	-4.93316689910695	2.30510643008433
Η	0.03652196405351	-5.35616916874674	1.96884037372430
С	-1.69097200752835	-4.22545802379161	1.42308754192795
С	-3.81022994367113	-3.83763329000184	-0.37885132925086
С	-4.99902928356614	-4.13285956396533	-1.01925791707625
Η	-5.91200969855846	-3.65487059521556	-0.70537109975801
С	-5.00898163291902	-5.02880964726112	-2.08416723669392
Η	-5.93583381105901	-5.25312413734126	-2.58733670427332
С	-3.82906712296715	-5.61709318072916	-2.51102589133925
Η	-3.83750389662130	-6.30220927411718	-3.34368262503297
С	-2.62868375229376	-5.31105125883293	-1.87561282341467
Η	-1.70470917277514	-5.74726456355136	-2.21912653798744
С	-2.62099725731705	-4.42976441581986	-0.81062234060020
С	-3.61185708091566	-2.89388339286628	0.78047801500128
Η	-4.54183101686132	-2.46375684996518	1.12852882632215
С	-1.41308490146772	-3.96032160785722	-0.03628412132904
Н	-0.49848736153647	-4.41963188369138	-0.38422830753224

С	-2.63581868694982	-1.72947842923079	0.30408612608387
С	-1.34219897894930	-2.39970077274101	-0.25663709032529
N	-0.09460776849807	-1.84535694560422	0.27225071593212
N	-3.24618054035965	-0.90693751227617	-0.70247647194598
Н	-2.36150731329199	-1.20618482306832	1.21824228043870
Н	-1.36165049698173	-2.24684781703526	-1.32715678262604
С	0.95515494757272	-2.06133282952991	-0.50095010669386
0	1.01148991021516	-2.70111273589372	-1.56807031228103
С	2.27609101672677	-1.45164069034885	-0.03806577092779
С	3.39993616919129	-1.55894733184259	-0.85890534632165
С	3.48243905794942	-0.30062999858052	1.54149810766304
С	4.59175172552359	-1.00228643659773	-0.43857192786997
Н	3.29648376656803	-2.07281685289083	-1.79536544590811
С	4.64389635975096	-0.35669229489746	0.78985332017502
Н	3.45367230949712	0.18522951235672	2.50444874215599
Н	5.47219298006359	-1.06826029927680	-1.05793358217433
Н	5.55363709267580	0.08975021709485	1.15419207052752
N	2.34033124073953	-0.83179571972908	1.13285904999391
С	-4.03969376216117	0.09568561176922	-0.42166943647970
0	-4.66125077508372	0.77815621611317	-1.26881390648136
С	-4.32477978188978	0.54931625757369	1.01615222449665
С	-5.64284735665062	0.53466072663341	1.47582660641364
С	-3.34796307349947	1.05601382518796	1.86835494687795
С	-5.96918496128681	0.98782207033849	2.74342785091478
С	-3.66819670620413	1.51942779827209	3.13813199129166
Н	-2.32230035133471	1.08391454719673	1.54646263703077
С	-4.97983929504762	1.48435425494733	3.58446425606429
Н	-6.99553593821708	0.95773863527934	3.07680179545669

Η	-2.88079243365650	1.87759776263851	3.77943421089528
Η	-5.22842341816728	1.83215998899678	4.57454334160896
Cu	0.13942063367543	-0.92049698419207	2.03744876013629
Cl	0.25952373276251	0.08526378649440	4.03135416966742
Η	-6.41316952095481	0.18132332874144	0.81138889848157

L8^{NNO}•Cu^I

С	-2.26607830177772	3.84840594541677	-2.51485661046162
С	-2.35205781243868	3.77737367032772	-3.89245368058958
Η	-3.16580365084757	3.24482179143088	-4.35743927888943
С	-1.38021203258064	4.39160823379520	-4.67756412355062
Η	-1.44681000296832	4.34015970097817	-5.75166342357540
С	-0.32617337505139	5.06285475590569	-4.07969657086398
Η	0.42803400581208	5.53207527104171	-4.68944294251359
С	-0.23587257876524	5.12995228593644	-2.69230663346010
Η	0.58834896324131	5.64310773149735	-2.22560605543039
С	-1.20572248530227	4.52947860672319	-1.91148172155414
С	-3.68091073040540	4.29309588898663	-0.58435777470112
С	-4.99284712777604	4.60585405260877	-0.28370168613419
Η	-5.79683446376194	4.03672048001798	-0.72021023158543
С	-5.27047122295612	5.65062621111583	0.59282130640122
Η	-6.29277697263455	5.89526378309787	0.82902799480762
С	-4.23560851288812	6.37018792114708	1.16809115644150
Η	-4.45328777718457	7.17548387183302	1.84990113366513
С	-2.91354145351555	6.05120896371530	0.87200449559254
Н	-2.10698099735127	6.60097713072602	1.32833313514942
С	-2.63743225585573	5.01952760656335	-0.00595586106725
С	-3.19728963456280	3.20367888432414	-1.51221406466061

Η	-4.01212219548290	2.66852646577478	-1.98375751929999
С	-1.26754121740357	4.51634986531738	-0.40238827657162
Н	-0.46600209460068	5.07418616947586	0.05764624026166
С	-2.30041911825567	2.20360602870315	-0.70417328808121
С	-1.23242543768345	3.02278213725117	0.09445617918861
N	0.04022974983659	2.34760549116649	-0.00726197661616
N	-3.12197020020294	1.34345598913872	0.11114655201166
Н	-1.75235914247502	1.63163591052737	-1.44879713389807
Н	-1.54446531272270	3.05227777366298	1.13683401322458
С	1.11809359878266	2.81716523192603	0.56340325437011
0	1.33880662777686	3.88624888477986	1.15922931277800
С	2.29582952822734	1.84163422447313	0.44744082857580
С	3.58328406048176	2.28273521302633	0.73376585089207
С	3.08570843499959	-0.27738258591983	0.00457186225753
С	4.64248234669974	1.40374266856188	0.63054743459315
Η	3.70422466693801	3.30619642717129	1.03414899225863
С	4.39315394301642	0.09166455890008	0.25559529931168
Η	2.84247619421291	-1.28812695787111	-0.27530316677604
Η	5.64728659000912	1.73025702188774	0.84088658041859
Η	5.18486100411556	-0.63089110587110	0.16624604778192
N	2.06222525216131	0.56976329430659	0.09491174681475
С	-2.79190302280291	0.10656241240133	0.26427112424038
0	-1.75470917442183	-0.53404229036675	-0.16543830676096
С	-3.77068589427325	-0.74239704346286	1.04663017742525
С	-4.92337851112514	-0.19695462211894	1.60965526410857
С	-3.52927991845903	-2.10210054851298	1.22029102021348
С	-5.80722351112708	-0.98896337186852	2.32325014992627
Η	-5.10336987405111	0.85354944365655	1.47629211212505
С	-4.41660151748437	-2.89874916330598	1.93068945899396
----	-------------------	-------------------	-------------------
Н	-2.63788279175477	-2.51872836832637	0.78950683064733
С	-5.55949843413810	-2.34613742420694	2.48652335685437
Η	-6.69122562807580	-0.54802276682174	2.75424585232823
Н	-4.21265846673506	-3.95021323666061	2.05200525238463
Н	-6.24802818782155	-2.96214805315068	3.04130775846618
Cu	0.02558085140960	0.25081057916660	-0.18507209546837

L8^{NNN}•Cu^I

С	-2.90781129124592	-3.68046865675812	2.13164834635104
С	-3.46035747886549	-3.82065378319546	3.38984152479710
Η	-4.27745436770137	-3.18815854855292	3.69462714512012
С	-2.94985087797712	-4.77635431742260	4.26541256348064
Η	-3.38141027011127	-4.88916859673130	5.24608626475853
С	-1.88718271262363	-5.57582522469807	3.87980291619148
Η	-1.49039839919948	-6.30989656857782	4.56124261548890
С	-1.32982625116660	-5.43476800885337	2.61144811426673
Η	-0.50264613123690	-6.05638808194214	2.31085060144345
С	-1.84070588466859	-4.49472782702951	1.73686569660659
С	-3.62631387091864	-3.43629787997717	-0.17193905515669
С	-4.79552260478670	-3.35342687986923	-0.90377195027406
Η	-5.56363751274495	-2.65449244304425	-0.61693963154380
С	-4.97700358320674	-4.17489637845732	-2.01355959189677
Η	-5.88815317801540	-4.11058089052533	-2.58461685225351
С	-3.98832493733641	-5.07033753415306	-2.38490531219769
Η	-4.12970406139996	-5.70238114862981	-3.24579905701514
С	-2.80588653768993	-5.15120968815544	-1.65352534211520
Н	-2.02750420447906	-5.83301311067909	-1.95315690561643

С	-2.62851631577805	-4.34129599935583	-0.54908949140439
С	-3.29501325645231	-2.65334646886807	1.08142256983360
Н	-4.12447084248195	-2.04688873137428	1.40600722094273
С	-1.38967270098707	-4.24064621559159	0.31770897504466
Η	-0.59479146686010	-4.89690781516964	-0.00621144266850
С	-1.95371407971483	-1.82710957778720	0.91605120623941
С	-0.97195483384726	-2.73600791447806	0.12600287452467
N	0.36195944831228	-2.28574355522053	0.41584244325957
N	-1.89407443279824	-0.49498034100695	0.31203484701908
Η	-1.54716107908181	-1.76324214929581	1.92346562280588
Η	-1.16030606218252	-2.54403857936095	-0.92956458229663
С	1.36407780174846	-2.63751474885840	-0.34690762686901
0	1.53840160926782	-3.60217243784438	-1.10945226856254
С	2.47815693927773	-1.58459803152473	-0.31865720008314
С	3.81536017185770	-1.94177274375556	-0.44468708212917
С	3.04494803615624	0.65242577966787	-0.30517768723389
С	4.78385163386447	-0.95928812732132	-0.46415229144450
Η	4.05532762476149	-2.98497944611403	-0.53309425981839
С	4.39375112772911	0.37099922389786	-0.39307014220096
Η	2.69401822844662	1.66957514012908	-0.27208312200388
Η	5.82652302714565	-1.21902459896298	-0.54060853851793
Η	5.11169272791813	1.17139319063058	-0.41632018437782
N	2.10748555917640	-0.29438288993679	-0.26031436273015
С	-2.69938534261749	0.53290964760177	0.54081627432254
0	-2.54787429567852	1.64877670388144	0.02462768426344
С	-3.88363870891324	0.45147874366222	1.48884965059238
С	-5.17238068873012	0.66827855644842	1.00893602975712
С	-3.70460995718364	0.28538872333586	2.85770078614459

С	-6.25705324149071	0.68531391095161	1.87011196431455
С	-4.78673272079972	0.32465593510361	3.72604441478805
Η	-2.71414431579864	0.12571355352052	3.24753035146751
С	-6.06897331945761	0.51560378304089	3.23562744782018
Η	-7.24907500265285	0.84062753581404	1.47899902234991
Η	-4.62669551863065	0.20225096264092	4.78448593509709
Η	-6.91068593675811	0.53681644206987	3.90731135536042
Cu	0.05382852343182	-0.14354025469507	-0.01337905713486
Η	-5.31361006582430	0.83208917237764	-0.04513933590688

Relaxed L8²⁻

С	-1.50980226084915	-3.62116911105623	2.72615860314258
С	-1.68340799356656	-3.35860169562684	4.07323134827566
Н	-2.59483981702770	-2.89582078173036	4.41589570582876
С	-0.67460272951149	-3.67842775539011	4.97826380108572
Н	-0.80887890248065	-3.47176667409105	6.02843777746346
С	0.50615731833735	-4.24796831889832	4.52847145142283
Н	1.29320272857669	-4.48162267860238	5.22792426735532
С	0.68669722033739	-4.50121342513615	3.17134393436695
Н	1.61434478656440	-4.91963513040380	2.81674460300411
С	-0.31759423511593	-4.19425697240955	2.27206048157501
С	-2.70156566335182	-4.58789816231023	0.84738635268309
С	-3.91766838169115	-5.17282443811878	0.54584575846410
Η	-4.83244588091537	-4.70326056560895	0.86848478893298
С	-3.95820982278705	-6.35366684773445	-0.19122442266858
Η	-4.90795562694109	-6.80556946444191	-0.43014987186307
С	-2.78148982925926	-6.93835136380692	-0.63216536929142
Н	-2.81433403966444	-7.84727986952626	-1.21215658252973

С	-1.55577679165536	-6.34613404076767	-0.33785773842845
Η	-0.63938107398957	-6.78643853051787	-0.69659752740514
С	-1.51383810284546	-5.17956003763884	0.40443987255748
С	-2.47781918369340	-3.30887238560186	1.61442782916270
Η	-3.39401883773722	-2.85918950452032	1.96935068259883
С	-0.28538345053009	-4.38980303622759	0.77679664141039
Η	0.62898944866872	-4.84780259174546	0.42676330454808
С	-1.73914522626712	-2.28860317440128	0.64874203888385
С	-0.44890857328055	-2.96687850633627	0.09548401043282
N	0.72920556642948	-2.15321921208103	0.29823579186393
N	-2.61190882184876	-1.84170064435282	-0.41271153494271
Η	-1.43091139768558	-1.45903658966913	1.27942782633752
Η	-0.60922271938651	-3.16705888891441	-0.96086661376087
С	1.75959584368178	-2.46914083420471	-0.42755916220803
0	1.92057331092540	-3.39500780489706	-1.27345384596586
С	2.97079546861827	-1.54876963249551	-0.26513410139782
С	3.86403878420004	-1.45870114093756	-1.34356549190996
С	4.27070786604539	-0.10161446457716	0.94302848545016
С	4.96893118827598	-0.63980154186559	-1.25597108824262
Н	3.65092338169721	-2.05001610006941	-2.21395593853973
С	5.19008931231989	0.06455297620416	-0.07864517959414
Н	4.41027948854706	0.41788458259362	1.88207479459363
Н	5.65275565563666	-0.55037331279288	-2.08629436119444
Η	6.04202779533599	0.71281006179979	0.04598876149418
N	3.19357471421462	-0.87111089682644	0.86235775416589
С	-3.56813982398621	-1.02036339169791	-0.07138394523836
0	-3.88291616298300	-0.56480491561861	1.06007486553971
С	-4.43227795829112	-0.56017595905553	-1.24635941704756

С	-4.20528533029771	-0.98435972663075	-2.55558137309629
С	-5.48918755058185	0.31696887307395	-1.01666631786900
С	-5.00829167357217	-0.54539041526907	-3.59691360457047
Η	-3.38646937086661	-1.66017318741823	-2.72330818578493
С	-6.29587989103031	0.76037098089488	-2.05670395926556
Η	-5.65164591230094	0.63674086353243	-0.00258438488795
С	-6.06052465872253	0.33105903039748	-3.35482759008372
Η	-4.81384611131610	-0.88559736658161	-4.60243093631265
Η	-7.10852515135652	1.44178532949650	-1.85442854067287
Н	-6.68425261702601	0.67323531461210	-4.16612444786781

$L2^{NNO}$ •CuCl₂

С	-1.88649399072427	-4.53976587870486	2.72782702458312
С	-0.48502919218565	-4.96273143383004	2.29651665997950
С	-2.60957767751661	-3.83892335299510	1.58055982065353
Н	-3.58686011847290	-3.48675161120067	1.90305806781028
С	0.28976427158957	-3.77235621100259	1.73538735644610
Н	1.26968359034699	-4.08962189454434	1.39906726459391
С	-1.84233868045315	-2.64064507693845	0.99367500047383
С	-0.42922470969714	-3.07470977893471	0.55858215990898
N	0.38526453982909	-1.95020106834930	0.10681484430566
N	-2.65520472354931	-2.11624193856780	-0.08479163398959
Н	-1.71582830179127	-1.89204001542938	1.77830956690188
Н	-0.53451455147409	-3.79687133952208	-0.25273293351979
С	1.51524845379303	-2.26617867092129	-0.49021403928215
0	1.93239589309772	-3.37945538892417	-0.86185988470177
С	2.45570217672732	-1.08760735333184	-0.65005818896021
С	3.73530007896181	-1.25254046842614	-1.16927483846763

С	2.84654520408443	1.14245305295259	-0.22293690936261
С	4.58521739725218	-0.16464431524358	-1.19375216366386
Η	4.01813164360290	-2.22644198901454	-1.52131203435920
С	4.14105189590896	1.05483861916263	-0.70169472022958
Η	2.42627709034077	2.05689723007802	0.15012019239676
Η	5.58531039457651	-0.26229344136905	-1.58609690994936
Η	4.77492842567471	1.92433018057947	-0.69857243628480
N	2.03970466333009	0.09065491166226	-0.20401763430390
С	-2.63949209190348	-0.84368653704707	-0.27413716383796
0	-1.92762930555714	0.04377885271604	0.32629898886650
С	-3.62396557968075	-0.30519946887745	-1.28944853028947
С	-4.66017203078304	-1.09359718917730	-1.78784907790013
С	-3.51437470703289	1.01109161178586	-1.72939339011029
С	-5.57120124940920	-0.57933678354885	-2.69656113473524
Η	-4.72813359538719	-2.11105213764763	-1.44794437447946
С	-4.42406966182256	1.52388305977081	-2.64482815089316
Η	-2.69487219185000	1.60709594915265	-1.36959751293908
С	-5.45847652661991	0.73680000423998	-3.12857076686367
Η	-6.36918996640720	-1.20323485507527	-3.06893287170665
Η	-4.31490741111953	2.54130716570057	-2.98448676374390
Η	-6.16488115798038	1.13909367321711	-3.83820252523004
Cu	0.01909162342559	0.13210409542787	0.29598271739894
Cl	0.53003247806746	1.12867232642933	2.53340096521830
Cl	-0.02448529228963	2.04531022952820	-1.48380698797233
Η	-2.79105969100433	-4.54963642477851	0.77417492347649
Н	-1.80747696782295	-3.86155059313215	3.57779979579056
Н	-2.46355384808443	-5.40171293652907	3.06841272461078
Н	0.05822973811298	-5.40233740540651	3.13442247193106

Η	-0.56184481854012	-5.73958788732545	1.53407610626102
Н	0.43746562043702	-3.03186067960819	2.51976273816863

L2^{NNN}•CuCl₂

С	-3.76732416474454	-3.71903771504974	0.26022618571144
С	-2.61658187688120	-4.60644859180410	-0.21469754664906
С	-3.60694782979964	-2.26678821888084	-0.20264441539727
Н	-3.68277482667684	-2.20866762798681	-1.28895220465478
С	-1.25178465110627	-3.99904447860014	0.11835164743162
Н	-0.45521570109036	-4.59890565448462	-0.30195208161755
С	-2.24629530223693	-1.68543165988688	0.22370912199325
С	-1.15022211164922	-2.56431298082626	-0.42163233272824
N	0.12440223323475	-1.92014578193149	-0.21116236530148
N	-2.00785683649429	-0.29943004248951	-0.17598668695174
Η	-2.14736952632392	-1.81768815136154	1.30398632767587
Η	-1.35072310877546	-2.59844951674723	-1.49810335255874
С	1.25843510044054	-2.45977826095302	-0.58182027903736
0	1.49655260402214	-3.55353998939383	-1.12906104098198
С	2.43565505057576	-1.55751825805794	-0.25857075520056
С	3.74568142010302	-2.00890648370203	-0.36671023945065
С	3.13638402600041	0.51626879222276	0.44952541240640
С	4.77312179065858	-1.14665601501045	-0.03423661219095
Н	3.91210916797015	-3.01476357909475	-0.70409995785489
С	4.46800484807159	0.14010710363604	0.38526213113985
Η	2.82148223420132	1.50254831046559	0.74113575364067
Η	5.80011290818702	-1.47022894561147	-0.09977294786994
Н	5.23938764713039	0.84061850816170	0.65512144005093
Ν	2.15802636391888	-0.31856077442172	0.13407174997778

С	-2.93457666107770	0.65516082596400	0.03051920320034
0	-3.05064817024354	1.67270765378880	-0.64519364060163
С	-3.91311500159120	0.56516838045517	1.20506844334957
С	-5.25526814690576	0.88225535682735	1.00759587024009
С	-3.47209468875868	0.29096002472273	2.49647125204633
С	-6.15091949888211	0.88833498947134	2.06444857576535
С	-4.36595059422270	0.32208866027987	3.56034788757997
Η	-2.42833930157959	0.08359970908513	2.67648919329414
С	-5.70678210522904	0.60731598007666	3.35111906140889
Η	-7.18958757288823	1.12373624523693	1.89010999598464
Η	-4.00294410746271	0.12442947695904	4.55588016078229
Η	-6.39750745430310	0.62123993196946	4.17977189907866
Cu	0.00288195582255	0.04525948537972	0.20110302065726
Cl	0.14067032411241	-0.22517690517628	2.97018365237010
Cl	0.38576165541683	2.33076864844883	-0.18709649686925
Η	-5.58112081369467	1.13616600092855	0.01343965998913
Η	-2.68994898598036	-4.73757389770071	-1.29547683260359
Η	-4.72164391333099	-4.11899551253384	-0.08651717263661
Η	-1.10631027618951	-3.97387418479918	1.19735172142107
Η	-2.70362062989036	-5.60241578674092	0.22224302342695
Η	-4.42149746723664	-1.67783298496365	0.19921720503885
Η	-3.80357728962073	-3.73597501287071	1.34936787149486

Relaxed L2²⁻

С	-2.11942368754348	-4.10181777716059	2.97232764094247
С	-0.74852421774391	-4.73050323902847	2.73302571073285
С	-2.64118704423382	-3.43798642008050	1.69816767957203
Н	-3.58965309053429	-2.94474970972249	1.88594047636575

С	0.22386609028330	-3.70282651324206	2.15516812587944
Η	1.18104355002130	-4.16377565064258	1.93351260253401
С	-1.67545107737990	-2.39343105914858	1.09371278915413
С	-0.28018163589558	-3.01822347989316	0.86445835295087
N	0.68859003475880	-2.02919198477091	0.43925359225072
N	-2.24624893563330	-1.87543570275463	-0.13453405788327
Η	-1.55974498862873	-1.59151347528928	1.82852032754322
Η	-0.38713078626750	-3.79685391164601	0.10311184180388
С	1.75947809839109	-2.47510898730045	-0.16209140409977
0	2.11593669714755	-3.63868573335568	-0.46331436266206
С	2.70102393890283	-1.32533433739327	-0.54664008630035
С	2.19164844656635	-0.02576384209568	-0.70634794718484
С	4.80142827927421	-0.57725131995713	-1.08210373979240
С	3.03299157783785	0.99965603514199	-1.07477420874864
Η	1.14345511191054	0.11899920594728	-0.52551230087302
С	4.38498504570658	0.72687963858220	-1.26837128398772
Η	5.84524852904395	-0.83319498365570	-1.21757375267816
Η	2.64884447224830	1.99876672615698	-1.21165407410167
Η	5.08602067295123	1.49462911220388	-1.55424058174140
N	3.99711415217590	-1.57988157227936	-0.74358184087312
С	-3.18468338691377	-0.98115797638708	-0.01427063839803
0	-3.70055327994146	-0.46178340355012	1.01565204892988
С	-3.74725050149363	-0.50188723018333	-1.35456135919812
С	-3.23661067599276	-0.93303830425190	-2.57961963172051
С	-4.81025489931369	0.39827184314429	-1.37129614455200
С	-3.77267592086220	-0.48127995953872	-3.77558988512652
Н	-2.41200603981135	-1.62242932068253	-2.55544339901168
С	-5.35271294920758	0.85201482864701	-2.56715347352036

Η	-5.18909713707961	0.72662969655381	-0.41945658359616
С	-4.83745038133042	0.41428536361355	-3.77874327765415
Н	-3.35806076477142	-0.82469481700686	-4.71113177835410
Н	-6.17727920687639	1.54944558349343	-2.55395726334996
Η	-5.25335929947521	0.76634949290858	-4.71034832465323
Η	-2.81980281862190	-4.20482208645314	0.94259275766568
Η	-2.03542052573185	-3.35303980015276	3.76191812155484
Η	-2.83024663558391	-4.85130200135398	3.33094521318823
Η	-0.35157463342283	-5.15364654916379	3.65974748862277
Η	-0.85376542586803	-5.56211634277176	2.03412652362455
Η	0.40452124893872	-2.92378703548049	2.89772810674593

L8^{NNO}Cu (S)-C-Enolate

С	6.23138593724797	2.96196078822824	0.48237789687364
С	5.68267254403445	2.41170270274685	-0.66196916138826
Η	5.08944414379719	1.51446154276804	-0.59499725682078
С	5.91200909402029	3.01136897645679	-1.89726983191344
Η	5.48971390631961	2.57983998298752	-2.79027078264113
С	6.69674368810879	4.15011593679467	-1.98318988546934
Η	6.88687931738758	4.60277062008411	-2.94269437470466
С	7.25736433160519	4.69935723147744	-0.83340528381160
Η	7.88355081142589	5.57399989915845	-0.90078470218938
С	7.02321823865359	4.11054994737616	0.39524359322318
С	5.58999607103294	3.55804207401050	2.74481164900830
С	4.48833869713904	3.52535853340400	3.57973410410531
Η	3.91017486736351	2.62068128987170	3.66949772467876
С	4.14173660564787	4.65534378919622	4.31518203885417
Н	3.28488087110543	4.62786787241845	4.96913796926374

С	4.90417431461776	5.80881728361554	4.22041185855776
Η	4.63961582631854	6.67988670808733	4.79837221150177
С	6.02081148027886	5.84026387521291	3.38901870314886
Н	6.62952824274030	6.72787663564954	3.32957017956280
С	6.35799614105652	4.72164122063747	2.64970682325925
С	6.11076704925245	2.43138628601081	1.88810817392602
Η	5.51208419826368	1.53481225053958	1.94969333848465
С	7.54861455314569	4.56881626989617	1.73382244328124
Н	8.13802635671131	5.47209338270831	1.67152280849130
С	7.58442120364501	2.09370917465075	2.36950381571651
С	8.41829158762314	3.40649313266543	2.35669273965202
N	9.71444382567642	3.28945385800712	1.68827976986568
N	7.60401208841442	1.47783751553811	3.67252392998379
Η	7.98261954942518	1.41901862596722	1.61272289419353
Н	8.58539399438363	3.68490544414209	3.38985368733510
С	10.56787194278682	4.24946087768450	1.99684962382321
0	10.39016105592918	5.22814150669685	2.74814564853353
С	11.94711568525629	4.16014101229111	1.34922997010394
С	12.90994190340793	5.11793715179770	1.66701530121187
С	13.40183272338183	3.09748107599107	-0.08117330912680
С	14.15582233367549	5.03529838589071	1.07587476121315
Η	12.64718601984582	5.89040085033288	2.36423247982483
С	14.41429328870955	4.00690914513698	0.18077195577845
Η	13.53208124320067	2.27653831831397	-0.76806672500869
Η	14.91769476085926	5.76306330300878	1.30717929449225
Н	15.37087000229080	3.90855808584072	-0.30381266968040
N	12.20773898222695	3.17994312940101	0.49283861252694
С	7.14010296320940	0.25632831560436	3.73870937198228

0	6.64655277508278	-0.46491243031521	2.83495330169411
С	7.21148397789433	-0.35870773935019	5.13517930738592
С	7.72406199695065	0.33109578096545	6.23310739650596
С	6.74970804040382	-1.65704124585808	5.33322393369461
С	7.77132071526837	-0.25913301967631	7.48663509943403
Н	8.08074320587613	1.33183747478098	6.07138080575170
С	6.79598249668222	-2.25268772079195	6.58662921928115
Н	6.35955849559413	-2.17854048327869	4.47740700148599
С	7.30685022967873	-1.55614103646031	7.67215378246229
Н	8.17310651261168	0.29195912048143	8.32269036567091
Н	6.43449753915807	-3.26132729740667	6.71621283005958
Н	7.34557394811480	-2.01559399115571	8.64744331746310
Cu	10.27610805242375	1.77359694839308	0.47994354470838
Н	8.56324330048843	-0.72675776121907	-3.01881070034895
0	10.37781535252626	0.19646627708095	-2.81918564888737
С	11.27374166556948	0.27075130367659	-1.76198212838787
С	10.58223475300523	0.00451090643053	-0.51684851721195
С	9.30657033522834	-0.72368564457775	-0.93816145369407
С	9.07198909454216	-0.08636367121458	-2.30372543201604
Η	8.46004129402521	-0.58890030450431	-0.27624075377657
Η	9.46244133517130	-1.80174842868064	-1.05659161046759
Η	8.52237189479143	0.84740477470941	-2.20843774444964
0	12.43485204733239	0.52209419085496	-2.01438179739486
Н	11.21455454735805	-0.51282281818208	0.19502045733385

L8^{NNO}Cu O-Enolate

С	6.09322652833337	3.50421025231355	0.34246207781556
С	5.55021766510462	3.13424132260723	-0.87347655432101

Η	4.82961321649832	2.33390680067478	-0.92221078601585
С	5.95092619296987	3.78521564669939	-2.03692007996189
Н	5.53487545712919	3.49162235056164	-2.98684855463401
С	6.89897869434046	4.79340147123227	-1.97695314713401
Н	7.22046574997618	5.28474508916950	-2.88091906036769
С	7.45213782649295	5.16109359410153	-0.75372421881460
Η	8.20312257038623	5.93249402732695	-0.70752272817270
С	7.04767723067114	4.52307009423411	0.40410528854708
С	5.38880135322856	4.00155625824176	2.61379123380903
С	4.23767136942012	4.06383558728334	3.37608726115348
Η	3.53444464081275	3.24749885484014	3.35502715614754
С	3.99887362299216	5.17321424255335	4.18276810343471
Η	3.10275662733930	5.21970995580782	4.78057366179997
С	4.91791053143664	6.20936699246096	4.22938096410659
Н	4.73612434535522	7.06373806386966	4.86153269295425
С	6.08252537447417	6.14427052463029	3.46883531090381
Η	6.80883388671690	6.93900842595115	3.51732395584493
С	6.31495853934417	5.04801511504637	2.65843221572668
С	5.81001648001692	2.88417496497894	1.69053772136359
Η	5.07574819377443	2.08976940404423	1.64026940969594
С	7.53551891933459	4.79966251651814	1.80444478458866
Η	8.25041535983980	5.60665139778081	1.85589555018213
С	7.17786747946795	2.30264885067738	2.19911159241183
С	8.18517667828321	3.48025081167612	2.38780013732094
N	9.48708807916564	3.16725466002625	1.82701607110720
N	6.95293367145486	1.51816837356444	3.38674007941789
Н	7.56023737997291	1.68725852756104	1.38582876624539
Н	8.28595281758308	3.66025440490769	3.45502458180513

С	10.45264135540876	4.00892860427367	2.11781294009436
0	10.39802925382369	5.09216152496426	2.74467917247928
С	11.82532811979805	3.60988416475288	1.59458701595358
С	12.82877588670171	4.57353954281980	1.48351181447189
С	13.22874000637443	1.98523280368338	0.78149385063138
С	14.06380851008091	4.20168901271583	0.98997484199789
Н	12.60683951226080	5.57830244326478	1.79036639049308
С	14.27555033531394	2.87877872576144	0.62401569127427
Η	13.32305145005856	0.94643880949590	0.50861101115244
Н	14.85255921460111	4.93040451824925	0.88633466540636
Η	15.22163071834627	2.54765973422411	0.22985835088542
N	12.04587902229019	2.34355783303319	1.25984093244623
С	7.78653639120910	0.53903884469127	3.59976668503117
0	8.79766402720539	0.17645493054400	2.93742588863185
С	7.47229219629328	-0.29984006794312	4.83214202469537
С	6.43695841615077	0.02079071201520	5.70891920696298
С	8.23846675312142	-1.43020156040557	5.10325489490873
С	6.17456168073814	-0.76610574320410	6.81962590848115
Η	5.85272835433408	0.89692509012474	5.49467956876579
С	7.97564402268555	-2.22325281758037	6.21203512731964
Η	9.03698622359387	-1.66455901395326	4.42265115344068
С	6.94208102113765	-1.89577990897106	7.07746046992556
Η	5.37042518698155	-0.49876715514318	7.48762747847345
Η	8.57967637143779	-3.09694665729407	6.40088370470716
Н	6.73743189597732	-2.50915256328498	7.94092226178023
Cu	9.93501045646071	1.17622807010139	1.24874609874757
Η	9.04739198280949	-0.83469159692127	-3.44919294972644
0	9.07930790656605	-0.79009740655898	-1.40023613803039

С	10.40058061097480	-0.97505431998636	-0.94051133307120
С	11.02410059774683	-1.94133707851705	-1.68701381714986
С	10.04383333627783	-2.57985307081058	-2.62535187759146
С	8.93003722381986	-1.51888335683946	-2.60534639250755
Η	11.99155869369515	-2.33521647906333	-1.44121668731970
Н	9.66326870008506	-3.55488317700264	-2.28514062788806
Н	10.40399417751459	-2.73449444126803	-3.64602358479373
Η	7.92531308985570	-1.93390217257068	-2.63714800186997
0	10.76686481835389	-0.26977177373785	0.02013120983030

L8^{NNO}Cu (R)-C-Enolate

С	6.22448802795410	3.32700636267636	0.41780447404632
С	5.65005098656497	2.91434340826566	-0.77073097231448
Η	5.02739459294637	2.03497891289679	-0.78917414698947
С	5.89283328629005	3.62743194983595	-1.94125271344459
Η	5.44992289325574	3.30294693331660	-2.86897492254997
С	6.71595368202547	4.74179621363067	-1.91932464761228
Η	6.91451893718348	5.28364211675035	-2.82980809993021
С	7.30453637802892	5.15107635750716	-0.72597600605518
Η	7.96174563333541	6.00523345631588	-0.71105784905568
С	7.05822872677582	4.44874881651333	0.43895344429357
С	5.62429438345502	3.71385998669105	2.73674067410715
С	4.52724917995733	3.64063690052572	3.57514240916516
Η	3.91323952810754	2.75530948830736	3.57914833506642
С	4.23044217163379	4.70356599850317	4.42372623365845
Η	3.37680958518041	4.64409052887078	5.07976880933534
С	5.03790327294161	5.82981976333825	4.43801503927410
Н	4.81156236069467	6.64808873638871	5.10282818126791

С	6.15003405664394	5.90081469950665	3.60307085368734
Н	6.79290621893212	6.76577880151563	3.62640021557503
С	6.43805335632884	4.84995573556098	2.75191991091243
С	6.09368657838901	2.66092366188231	1.76411497847958
Н	5.45951968340723	1.78680168827157	1.74068766287298
С	7.61400232424845	4.74596714017407	1.81060796499241
Н	8.23892997057193	5.62731134469418	1.83349505570794
С	7.55541980383860	2.21999525763662	2.19179014907947
С	8.44324523089543	3.49208095145309	2.29531681781835
N	9.71646526779650	3.38468519217442	1.58449520441629
N	7.55510766595042	1.47828149903059	3.42743551269343
Н	7.91880591655863	1.60860153459789	1.36771136738055
Н	8.64335960540710	3.65805797213048	3.34659346546070
С	10.63019025004062	4.25508814617120	1.97257516737959
0	10.52696345642532	5.15309111847369	2.83096973705453
С	11.98651966654538	4.15693098153754	1.27970868089851
С	13.00926480648650	5.02410314240066	1.66301406480777
С	13.34631328540899	3.16297675013403	-0.28659090734815
С	14.23520386909631	4.93251519547508	1.03284023301916
Η	12.80644680379303	5.73610417283209	2.44009143725154
С	14.41509216860515	3.98435578238534	0.03589859758174
Η	13.41836226539191	2.40473883420824	-1.04979304514989
Η	15.04259175042017	5.59036465663131	1.31384806104304
Η	15.35470221780452	3.87940906201692	-0.47939367095844
N	12.17094879844240	3.25398391089516	0.32377827172595
С	7.08519475639624	0.25914963461680	3.36128008798931
0	6.60901185519204	-0.36411055769185	2.37827570140726
С	7.12346736471935	-0.49348390617908	4.68982236796984

С	7.63085926554274	0.07365344452080	5.85819149712853	
С	6.63481835692457	-1.79559740769223	4.75079603043712	
С	7.64714575740926	-0.63895343937342	7.04716610378764	
Н	8.00777052364639	1.07848930603556	5.80231144110681	
С	6.64931922190678	-2.51330458982980	5.93936129643269	
Η	6.24985369363055	-2.22207658638895	3.84168568684473	
С	7.15547260100384	-1.93831836353329	7.09593062807023	
Η	8.04576448598913	-0.18180513231600	7.93947872229532	
Н	6.26713053617726	-3.52231920983420	5.96275380457916	
Н	7.16986677622190	-2.49296281808332	8.02108773270724	
Cu	10.11823343976920	2.03780849899201	0.13357202896680	
Н	10.44097453792311	-1.19470985823924	0.80026417634661	
0	11.55650623904605	-1.13222827611906	-0.93147807777776	
С	11.39572302411117	0.09547648039636	-1.55431972709673	
С	10.05314521613578	0.59067578507900	-1.32197445130512	
С	9.25260807757006	-0.65115292722180	-0.92566345409902	
С	10.34431966594540	-1.47155454110112	-0.24715830639226	
Η	8.87154560765937	-1.19447683443839	-1.79799370503516	
Η	8.41984553798189	-0.47739978153940	-0.25562048877748	
Η	10.21040243873803	-2.54666343194338	-0.31780406038963	
0	12.33808862680528	0.55106026163936	-2.17166258502072	
Н	9.67841834879530	1.15308904412108	-2.16881816681983	

¹HNMR (400 MHz, THF-d8) Spectrum of CuCl₂/L8 + 30 equivalents of 2

