Enantioselective Alkynylation of Trifluoromethyl Ketones Catalyzed By Cation-Binding Salen Nickel Complexes.

Dongseong Park,^{1,#} Carina Jette,^{2,#} Jiyun Kim,^{1,#} Woo-Ok Jung,¹ Yongmin Lee,³ Jongwoo Park,⁴ Seungyoon Kang,¹ Min Su Han,¹ Brian M. Stoltz,^{2,*} and Sukwon Hong^{1,3,*}

¹Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea

²Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

³School of Materials Science and Engineering, Gwangju Institute of Science and

Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea

⁴ Department of Chemistry, University of Florida, P.O.Box 117200, Gainesville, FL 32611-7200, United States Current Address: Process R&D Center, SK biotek, 325 Exporo, Yuseong-gu, Daejeon, 34124, Republic of Korea

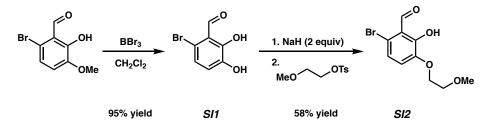
Table of Contents

Materials and Methods	
Synthesis of Salen-Crown Ether Ligands	S4
Spectroscopic Data for Ligand Intermediates	S4
Synthesis of Salen Crown Ether Ligands: Imine Formation	S6
Complexation Procedure (Ni/L synthesis)	
HRMS for the Catalysts with Nickel	S10

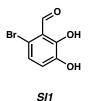
Synthesis of TrifluoromethylketonesS11
Procedure for Enantioselective Alkynylation of Aryl Trifluoromethyl Ketones S13
Spectroscopic Data for Aryl Trifluoromethyl Alcohol ProductsS14
Procedure for Enantioselective Alkynylation of Vinyl Trifluoromethyl Ketones S2
Spectroscopic Data for Vinyl Trifluoromethyl Alcohol Products
UV-Vis Data for Metal TitrationS28
References
HPLC and SFC Data for Trifluoromethyl ProductsS32
NMR Spectra for Salen LigandsS58
NMR and IR Spectra for <i>4f</i> S65
NMR and IR Spectra for Trifluoromethyl Alcohol Products

Materials and Methods

Unless otherwise stated, all reactions were carried out under air atmosphere. Reaction progress was monitored by thin-layer chromatography (TLC) or Agilent 1290 U HPLC-MS. TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, *p*-anisaldehyde, or KMnO₄ staining. Silicycle Silia*Flash*® P60 Academic Silica gel (particle size 40–63 nm) or 230-400 Mesh 60 Å Silica Gel (Merck Inc.). was used for flash chromatography. All alkynylation reactions were performed in 10 ml vial sealed with a screw cap. At the Gwangju Institute of Science and Technology (GIST) all NMR spectra was recorded on a JEOL spectrometer, operating at 400 MHz or 300 MHz for ¹H NMR and at 100 MHz or 75 MHz for ¹³C NMR. At the California Institute of Technology (Caltech), ¹H NMR spectra were recorded on Bruker 400 MHz or Varian Mercury 300 MHz spectrometers. ¹³C NMR spectra were recorded on Bruker 400 MHz spectrometer (101 MHz). ¹⁹F NMR spectra were recorded on Varian Mercury 300 MHz spectrometer (282 MHz). Data for ¹H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant

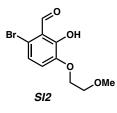

(Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = doublettriplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet, app = apparent. Data for ${}^{13}C$ NMR are reported in terms of chemical shifts (δ ppm). All chemical shifts for ¹H and ¹³C NMR were referenced to residual signals from CDCl₃ (¹H) 7.26 ppm and (¹³C) 77.16 ppm. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-700 MStation mass spectrometer. At the GIST, Infrared (IR) spectra were obtained on a Nicolet iS10 FT-IR spectrometer with an ATR unit and recorded in wave numbers (cm⁻¹). At Caltech, the IR spectra were obtained using Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm⁻¹) Highperformance liquid chromatography (HPLC) was performed on an Agilent 1260 Infinity Series machine equipped with a variable wavelength detector and Daicel Chiralpak I Series columns (0.46 cm x 25 cm). Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. High resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+), or obtained from Caltech mass spectrometry laboratory. Specific optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are reported as: $\left[\alpha\right]_{D}^{T}$ (concentration in 10 mg/1 mL, solvent). Yields refer to isolated yield of analytically pure material, unless otherwise noted.

All chemicals were purchased from Aldrich, Acros, TCI, or Alfa-Aesar Chemical Co. and used as received unless otherwise noted. At GIST, anhydrous tetrahydrofuran (THF), diethyl ether (Et₂O) and dichloromethane (CH₂Cl₂) were dried using J.C. Meyer solvent purification system. Hexane was distilled from calcium hydride (CaH₂). At Caltech, solvents were dried by passage through an activated alumina column under argon. Unless specified, all the other chemicals were purchased from Sigma-Aldrich Co., Acros Organics, TCI, Alfa Aesar, and Strem Chemicals Inc. and were used as received without further purification.


Synthesis of Salen-Crown Ether Ligands

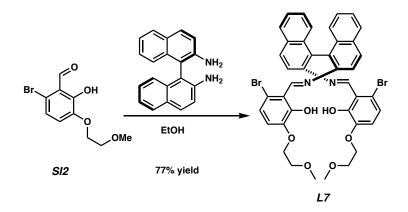
L2 and L4 are both known compounds, and were synthesized according to previously reported procedures.^{1,2}

General Procedure for Aldehyde Synthesis



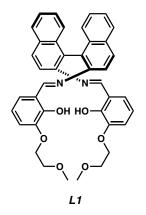
Spectroscopic Data for Ligand Intermediates

6-bromo-2,3-dihydroxybenzaldehyde (SI1): To a flame-dried round bottom flask under argon was added 6-bromo-2-hydroxy-3-methoxybenzaldehyde (5.74 g, 24.8 mmol, 1.0 equiv) and methylene chloride (50 mL). The solution was cooled to -78 °C and boron tribromide (7.1 mL, 74.5 mmol, 3.0 equiv) in methylene chloride (68 mL) was added dropwise. The reaction was warmed to room temperature and stirred for 5 h. Upon reaction completion the crude reaction mixture was poured into ice water and stirred for 1 h. The aqueous layer was extracted with methylene chloride three times. The combined extracts were washed with water and dried with sodium sulfate, and concentrated by rotary evaporator. The crude solid was then rinsed with hexanes to afford 6-bromo-2,3-dihydroxybenzaldehyde (**SI1**) as an orange solid (4.58 g, 21.1 mmol, 85% yield). ¹H


NMR (300 MHz, CDCl₃) δ 12.24 – 12.06 (m, 1H), 10.27 (s, 1H), 7.17 – 6.95 (m, 2H), 5.65 (s, 1H). All characterization data match those reported.³

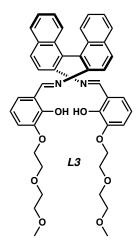
6-bromo-2-hydroxy-3-(2-methoxyethoxy)benzaldehyde (SI2): Sodium hydride (1.17 g, 48.75 mmol, 2.3 equiv) was added to a flame-dried flask under argon. This flask placed in an ice bath, and a solution of 6-bromo-2,3-dihydroxybenzaldehyde (SI1, 4.6 g, 21.2 mmol, 1.0 equiv) in DMSO (42 mL) was added dropwise. The resulting solution was stirred for 3 hours and then 2-methoxyethyl 4-methylbenzenesulfonate⁴ (5.37 g, 23.22 mmol, 1.1 equiv) in DMSO (4.2 mL) was added dropwise. The reaction was stirred for 24 hours at room temperature. The reaction was quenched with water and the pH was checked and adjusted to pH = 7. The aqueous layer was extracted with methylene chloride three times and the combined organic extracts were washed with 1M HCl, dried with Na₂SO₄, and then concentrated. The crude reaction mixture was filtered through a of pad silica and concentrated to afford 6-bromo-2-hydroxy-3-(2methoxyethoxy)benzaldehyde as an yellow solid (3.38 g, 12.3 mmol, 58% yield); ¹H NMR (300 MHz, CDCl₃) δ 12.25 (s, 1H), 10.29 (s, 1H), 7.07 (d, J = 8.6 Hz, 1H), 6.99 (d, J = 8.6 Hz, 1H), 4.23 - 4.15 (m, 2H), 3.82 - 3.75 (m, 2H), 3.45 (s, 3H); ¹³C NMR (101) MHz, CDCl₃) δ 198.5, 155.3, 147.8, 123.6, 121.3, 117.6, 71.0, 69.4, 59.4; IR (neat) 2984, 2942, 2933, 2932, 2750, 1686, 1641, 1579, 1467, 1454, 1438, 1388, 1370, 1332, 1317, 1285, 1274, 1250, 1211, 1202, 1127, 1102, 1081, 898, 861, 822, 789, 749, 676; HRMS C₁₀H₁₂BrO₄ (M+H)⁺: 274.9913, Found: 274.9921.

The corresponding aldehydes for other ligands tested were synthesized according to the procedure described above.

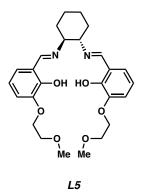

Synthesis of Salen Crown Ether Ligands: Imine Formation

6,6'-((1E,1'E)-(((R)-[1,1'-binaphthalene]-2,2'-

diyl)bis(azanylylidene))bis(methanylylidene))bis(5-bromo-2-(2-


methoxyethoxy)phenol)(L7): 6-bromo-2-hydroxy-3-(2-methoxyethoxy)benzaldehyde (2.38 g, 8.67 mmol, 2.0 equiv) and (*R*)-(+)-1,1'-Binaphthyl-2,2'-diamine (1.7 g, 4.33 mmol, 1.0 equiv) were combined in EtOH (14 mL). The reaction mixture was heated to 120 °C and stirred for 6 h. Upon completion the reaction was cooled to room temperature and subsequently filtered. The filtered solid were washed with EtOH, concentrated under reduced pressure, affording scarlet solids (2.69 g, 3.36 mmol, 77% yield); $[\alpha]_D{}^{20} = -301.6$ (c 0.652, CH₂Cl₂); ¹H NMR (400 MHz, C₆D₆) δ 13.84 (s, 1H), 9.08 (s, 1H), 7.65 (d, 12 Hz, 1H), 7.56 (d, 8 Hz, 1H), 7.30 (d, 12 Hz, 1H), 7.25 (d, 8 Hz, 1H), 7.03 (t, 8 Hz, 1H), 6.87 (t, 8 Hz, 1H), 6.54 (d, 8 Hz, 1H), 6.12 (d, 8Hz, 1H), 3.55 (t, 6 Hz, 2H), 3.21 (t, 4 Hz, 2H), 3.01 (s, 3H); ¹³C NMR (75 MHz, C₆D₆) δ 162.8, 155.0, 147.8, 143.6, 133.5, 132.8, 130.3, 129.4, 128.4, 127.2, 126.5, 126.1, 121.7, 118.2, 117.6, 117.0, 116.8, 70.7, 68.8, 58.5; IR (neat) 2925, 2876, 2817, 1600, 1586, 1440, 1338, 1246, 1224.50, 1125, 1085, 871, 814, 790, 752; HRMS (EI) Calcd. for C₄₀H₃₄Br₂N₂O₆: 796.0784, Found: 796.0782.

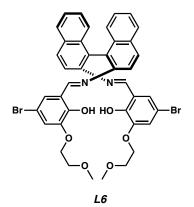
6,6'-((1E,1'E)-(((R)-[1,1'-binaphthalene]-2,2'-


diyl)bis(azanylylidene))bis(methanylylidene))bis(2-(2-methoxyethoxy)phenol)(L1):

2-hydroxy-3-(2-methoxyethoxy)benzaldehyde (365 mg, 1.86 mmol, 2.0 equiv) and (*R*)-(+)-1,1'-binaphthyl-2,2'-diamine (264.5 mg, 0.930 mmol, 1.0 equiv) were combined in EtOH (7 mL). The reaction mixture was stirred at room temperature for 48 h. The suspension was filtered. The filtered solid were washed with EtOH, concentrated under reduced pressure, affording orange solids (556.8 mg, 0.869 mmol, 94% yield); $[\alpha]_D^{20} = -$ 371.3 (c = 0.6, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 12.33 (s, 2H), 8.05, 8.02 (d, *J* = 12 Hz, 2H), 8.55 (s, 2H), 7.93, 7.91 (d, *J* = 8 Hz, 2H), 7.54, 7.51 (d, *J* = 12 Hz, 2H), 7.40 - 7.44 (t, *J* = 8 Hz, 2H), 7.22 - 7.24 (d, *J* = 8 Hz, 2H), 7.17 (d, *J* = 8 Hz, 2H), 6.89, 6.88 (d, *J* = 4 Hz, 2H), 6.80, 6.79 (d, *J* = 4 Hz, 2H), 6.66 - 6.70 (t, *J* = 8 Hz, 2H), 4.03 - 4.06 (m, 4H), 3.65 - 3.68 (t, *J* = 6 Hz, 4H), 3.39 (s, 6H); HRMS (EI) Calcd. for C₄₀H₃₆N₂O₆: 640.2573, Found: 640.2573.

6,6'-((1E,1'E)-(((R)-[1,1'-binaphthalene]-2,2'diyl)bis(azanylylidene))bis(methanylylidene))bis(2-(2-(2methoxyethoxy)ethoxy)phenol)(L3):

2-hydroxy-3-(2-(2-methoxy)ethoxy)ethoxy)benzaldehyde (191.3 mg, 0.797 mmol, 2.0 equiv) and (*R*)-(+)-1,1'-binaphthyl-2,2'-diamine (96.4 mg, 0.339 mmol, 1.0 equiv) were combined in EtOH (3 mL). The reaction mixture was stirred at room temperature for 48 h. The suspension was filtered. The filtered solid were washed with EtOH, and concentrated under reduced pressure to afford an orange solid (196.5 mg, 0.2697 mmol, 80% yield); $[\alpha]_D^{20} = -352.1$ (c 0.518, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 12.28 (s, 2H), 8.03 (d, *J* = 8 Hz, 2H), 7.92 (d, *J* = 8 Hz, 2H), 7.52 (d, *J* = 8 Hz, 2H), 7.44-7.40 (m, 2H), 7.26-7.22 (m, 2H), 7.18 (d, *J* = 8 Hz, 2H), 6.88 (d, *J* = 8 Hz, 2H), 6.79 (d, *J* = 8 Hz, 2H), 6.70 – 6.66 (m, 2H), 4.09 – 4.06 (m, 4H), 3.79 – 3.76 (m, 4H), 3.67 – 3.65 (m, 4H), 3.53 – 3.51 (m, 4H), 3.37 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 163.0, 151.7, 147.2, 144.4, 133.3, 132.6, 130.2, 128.4, 127.0, 126.6, 125.8, 124.9, 119.7, 118.2, 118.0, 117.8, 72.0, 70.7, 69.7, 69.1, 59.1; IR (neat) 3269, 3046, 2955, 2362, 1603, 1574, 1506, 1470, 1429, 1389, 1359, 1306, 1261, 1194, 1143, 1087, 969, 856, 815, 744, 700; HRMS (EI) Calcd. for C₄₄H₄₄N₂O₈: 728.3098, Found: 728.3096.



6,6'-((1E,1'E)-(((1R,2R)-cyclohexane-1,2-

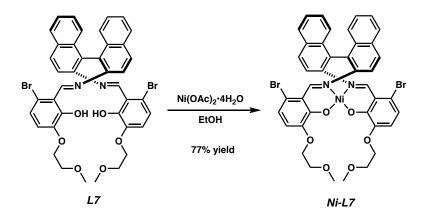
diyl)bis(azanylylidene))bis(methanylylidene))bis(2-(2-methoxyethoxy)phenol)(L5):

2-hydroxy-3-(2-methoxyethoxy)benzaldehyde (193 mg, 0.986 mmol, 2.0 equiv) and (1R,2R)-cyclohexane-1,2-diamine (56.3 mg, 0.493 mmol, 1.0 equiv) were combined in EtOH (8 mL). The reaction mixture was stirred at room temperature for 48 h. The solvent was removed under reduced pressure. The residue was purified by column

chromatography on silica-gel (*n*-hexane/EtOAc = 2/1, 1/2, 1/4), affording an oil (195 mg, 0.414 mmol, 84% yield): $[\alpha]_D^{20}$ = +120.0 (c = 0.5, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 13.83 (s, 2H), 8.21 (s, 2H), 6.88 – 6.90 (m, 2H), 6.77 – 6.80 (m, 2H), 6.67 – 6.71 (t, *J* = 6 Hz, 2H), 4.13 – 4.16 (t, *J* = 4.5 Hz, 4H), 3.76 – 3.78 (t, *J* = 3 Hz, 4H), 3.43 (s, 6H), 1.84 –1.93 (m, 4H), 1.66 –1.69 (d, *J* = 9 Hz, 2H), 1.42 – 1.47 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.8, 152.2, 147.4, 124.0, 118.7, 117.9, 116.6, 72.5, 71.2, 68.6, 59.3, 33.1, 24.1; IR (neat) 3315, 2929, 2856, 1625, 1578, 1477, 1450, 1376, 1338, 1289, 1233, 1022; HRMS (EI) Calcd. for C₂₆H₃₄N₂O₆: 470.2417, Found: 470.2425.

6,6'-((1E,1'E)-(((R)-[1,1'-binaphthalene]-2,2'-

diyl)bis(azanylylidene))bis(methanylylidene))bis(4-bromo-2-(2-

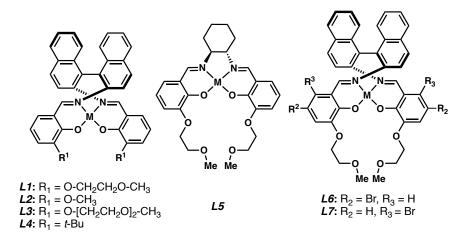

methoxyethoxy)phenol)(L6):

5-bromo-2-hydroxy-3-(2-(2-

ethoxyethoxy)ethoxy)benzaldehyde (80 mg, 0.291 mmol) and (*R*)-(+)-1,1'-Binaphthyl-2,2'-diamine (41.232 mg, 0.145 mmol) were combined in EtOH (10 mL). The reaction mixture was stirred at room temperature for 48 h. The suspension was filtered. The filtered solid were washed with EtOH, concentrated under reduced pressure, affording scarlet solids (100 mg, 0.125 mmol, 86% yield); $[\alpha]_D^{20} = -298.5$ (c 0.5, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 12.32 (s, 2H), 8.45 (s, 2H), 8.02 (d, 12 Hz, 2H), 7.91 (d, 8 Hz, 2H), 7.48 (d, 12 Hz, 2H), 7.41 (m, 2H), 7.21 (m, 2H), 7.13 (d, 8 Hz, 2H), 6.96 (d, 4 Hz, 2H), 6.91 (d, 4 Hz, 2H), 4.01 (m, 4H), 3.65 (t, 4Hz, 4H), .38 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 161.6, 150.9, 148.2, 143.7, 133.2, 132.8, 130.4, 126.2, 120.4, 120.2, 117.5, 109.5, 77.5, 77.2, 76.9, 70.8, 69.1, 59.2; IR (neat) 2875, 2360, 2342, 1605, 1569, 1450,

1398, 1363, 1332, 1250, 1199, 1125, 1089, 1026, 972, 900, 817, 751; HRMS (EI) Calcd. for C₄₀H₃₄Br₂N₂O₆: 796.0784, Found: 796.0784.

Complexation Procedure (Ni/L synthesis)



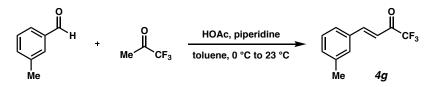
Ni-Salen Complex (Ni-L7): Ni(OAc)₂•4H₂O (1.17 g, 4.7 mmol, 1.4 equiv) and L7 (2.69 g, 3.36 mmol, 1.0 equiv) were combined in EtOH and heated to 100 °C for 12 h. While still hot, the crude mixture was transferred into a 20 mL vial, rinsing with a small amount of additional EtOH. The vial was placed in the freezer for 12h. The crude mixture was then centrifuged down, and the EtOH was decanted. The mother liquor was then reduced via rotary evaporator, and the crude reaction mixture was allowed to rest in the freezer, and centrifuged a second time. The combined precipitates were washed with hexanes, and dried under vacuum to afford a yellow solid (2.2 g, 2.58 mmol, 77% yield).

All other metal complexes were prepared using this identical procedure.

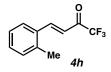
HRMS for the Catalysts with Nickel

The normal spectral region could not be determined by ¹H NMR, since Ni(II)-salen complexes **1d**, **2**, **3a-c**, **4** and **5** are paramagnetic. High-resolution mass spectra (HRMS) shows desired Ni(II)-salen complexes bearing one nickel atom. Similar effects for Ni(II)-salen complexes have been reported before.^{5,6}

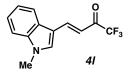
L1-Ni: HRMS (EI) Calcd. $C_{40}H_{34}N_2NiO_6$: 696.1770, Found: 696.1769 L2-Ni: HRMS (EI) Calcd. $C_{36}H_{26}N_2NiO_4$: 608.1246, Found: 608.1243 L3-Ni: HRMS (EI) Calcd. $C_{44}H_{42}N_2NiO_8$: 784.2295, Found: 784.2294 L4-Ni: HRMS (EI) Calcd. $C_{42}H_{38}N_2NiO_2$: 660.2287, Found: 660.2286 L5-Ni: HRMS (EI) Calcd. $C_{26}H_{32}N_2NiO_6$: 526.1614, Found: 526.1614 L6-Ni: HRMS (EI) Calcd. $C_{40}H_{33}Br_2N_2NiO_6$: 853.0059, Found: 853.0068 L7-Ni: HRMS (EI) Calcd. $C_{40}H_{32}Br_2N_2NiO_6$: 851.9980, Found: 851.9981

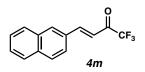

Synthesis of Trifluoromethylketones:

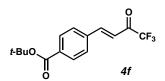
Aryl trifluoromethylketone **1h** was prepared according to a previously reported procedure.⁷ All other aryl trifluoromethylketones were purchased from Alfa Aesar, Sigma-Aldrich, or TCI and used without further purification.


Synthesis of Vinyl Trifluoromethylketones:

Previously reported methods were used to prepare $4a^8$, $4b^8$, $4c^9$, $4d^8$, $4e^8$, $4i^{10}$, $4j^{10}$, $4k^9$, and $4n^{10}$.

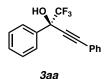

General Procedure for the Synthesis of Vinyl Trifluoromethylketones:


(*E*)-1,1,1-trifluoro-4-(*m*-tolyl)but-3-en-2-one (4g): 3-methylbenzaldehyde (601 mg, 5.0 mmol, 1.0 equiv), piperidine (493 μ L, 5.0 mmol, 1.0 equiv) and acetic acid (429 μ L, 7.5 mmol, 1.5 equiv) were all combined in dry toluene (5 mL) in a flame-dried flask under argon. The resultant solution was cooled to 0 °C, and then trifluoroacetone (1.8 mL, 20 mmol, 4 equiv) in toluene (5 mL) was added slowly. The reaction was stirred at 0 °C for 2 hours and then allowed to stir at room temperature for 24 h. The reaction was quenched with saturated ammonium chloride solution and the aqueous layer was extracted three times with ethyl acetate. The combined organic extracts were washed with water, and dried with sodium sulfate. Product 4g purified by column chromatography (5% EtOAc in hexanes) to provide a colorless oil (415 mg, 38% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 15.9 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.37 – 7.29 (m, 2H), 7.01 (dq, *J* = 16.0, 1.0 Hz, 1H), 2.41 (t, *J* = 0.7 Hz, 3H). All characterization data match those reported.¹¹

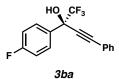

(*E*)-1,1,1-trifluoro-4-(*o*-tolyl)but-3-en-2-one (4h): Product 4h purified by column chromatography (8% EtOAc in hexanes) to provide a colorless oil (107 mg, 50% yield); ¹H NMR (300 MHz, CDCl₃) δ 8.31 (dt, *J* = 15.9, 0.6 Hz, 1H), 7.74 – 7.64 (m, 1H), 7.38 (td, *J* = 7.3, 1.4 Hz, 1H), 7.26 (m, 2H), 6.96 (dq, *J* = 15.8, 0.9 Hz, 1H), 2.50 (s, 3H). All characterization data match those reported.¹¹

(*E*)-1,1,1-trifluoro-4-(1-methyl-1*H*-indol-3-yl)but-3-en-2-one (4l): Product 4l purified by column chromatography (20% EtOAc in hexanes) to provide a yellow oil (192 mg, 15% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.21 (dd, *J* = 15.5, 0.7 Hz, 1H), 7.97 – 7.91 (m, 1H), 7.58 (s, 1H), 7.44 – 7.32 (m, 3H), 6.97 (dt, *J* = 15.6, 1.0 Hz, 1H), 3.88 (s, 3H). All characterization data match those reported.¹²

(*E*)-1,1,1-trifluoro-4-(naphthalen-2-yl)but-3-en-2-one (4m): Product 4m purified by column chromatography (8% EtOAc in hexanes) to provide a light yellow oil (500 mg, 40% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.19 – 8.05 (m, 2H), 7.95 – 7.86 (m, 3H), 7.75 (dd, J = 8.6, 1.8 Hz, 1H), 7.64 – 7.52 (m, 2H), 7.13 (dq, J = 16.0, 0.9 Hz, 1H). All characterization data match those reported.¹³

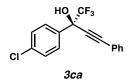


tert-butyl (*E*)-4-(4,4,4-trifluoro-3-oxobut-1-en-1-yl)benzoate (4f): Product 4f was prepared using the general procedure and purified by column chromatography (8% EtOAc in hexanes) to provide a colorless oil (687 mg, 2.3 mmol, 46% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.1 Hz, 2H), 7.97 (d, *J* = 16.0 Hz, 1H), 7.68 (d, *J* = 8.1 Hz, 2H), 7.07 (dt, *J* = 16.0, 1.0 Hz, 1H), 1.61 (d, *J* = 0.9 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 164.8, 148.8, 136.9, 135.2, 130.3, 129.0, 118.5, 82.0, 28.30; ¹⁹F NMR (282 MHz, CDCl₃) δ -77.66; IR (Neat Film, NaCl) 3051, 2995, 1709, 1613, 1568, 1417, 1392, 1368, 1305, 1265, 1189, 1141, 1063, 994, 896, 844, 772, 733, 705, 683 cm⁻¹.

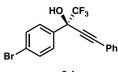

Procedure for Enantioselective Alkynylation of Aryl Trifluoromethyl Ketones

To a stirred solution of catalyst (0.012 mmol, 0.05 equiv) in THF (0.5 mL), alkyne (0.968 mmol, 4 equiv), 4 Å molecular sieve (377 mg), and KOtBu (0.484 mmol, 0.2 equiv) were added at room temperature slowly. After the solution had been stirred at

room temperature for 30 min to give a dark yellow mixture, ketone (0.242 mmol, 1.0 equiv) was added dropwise to a solution. After the resulting mixture was stirred at room temperature for 24 h, saturated ammonium chloride (2mL) was added to quench the reaction. The solution was extracted with ethyl acetate (3×15 mL). The combined organic layers were washed with brine, dried over anhydrous magnesium sulfate, and concentrated by rotary evaporation. The residue was purified by flash column chromatography ethyl acetate/hexane. Enantiomeric excesses were determined by HPLC on chiral stationary phase (Daicel Chiralpak IB or ID column (0.46 cm \times 25 cm)).

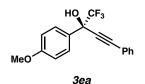


1,1,1-trifluoro-2,4-diphenylbut-3-yn-2-ol (3aa) : Product **3aa** was prepared using the general procedure to provide a pale yellow oil (93% yield, 93% ee); $[\alpha]_D^{24} = +26.8$ (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak IB column; Hexane/i-PrOH = 98:2; flow rate 1 mL/min, 254 nm wave length UV; minor t_R = 11.081 min, major t_R = 9.556 min. All characterization data match those reported. ¹⁴

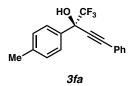


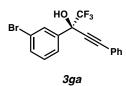
1,1,1-trifluoro-2-(4-fluorophenyl)-4-phenylbut-3-yn-2-ol (3ba):

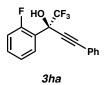
Product **3ba** was prepared using the general procedure to provide a pale yellow oil (93% yield, 90% ee); $[\alpha]_D^{24} = +25.2$ (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak ID column; Hexane/i-PrOH = 99:1; flow rate 0.5 mL/min, 254 nm wave length UV; minor t_R = 11.809 min, major t_R = 11.014 min. All characterization data match those reported.¹⁵



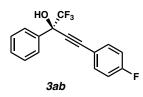
2-(4-chlorophenyl)-1,1,1-trifluoro-4-phenylbut-3-yn-2-ol (3ca): Product **3ca** was prepared using the general procedure to provide a pale yellow oil (94% yield, 89% ee); $[\alpha]_D^{24} = +17.8$ (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak ID column; Hexane/i-PrOH = 99:1; flow rate 0.5 mL/min, 254 nm wave length UV; minor t_R = 12.818 min, major t_R = 11.254 min. All characterization data match those reported.¹⁴



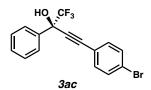

2-(4-bromophenyl)-1,1,1-trifluoro-4-phenylbut-3-yn-2-ol (3da): Product **3da** was prepared using the general procedure to provide a pale yellow oil (97% yield, 89% ee); $[\alpha]_D^{24} = +14.2$ (c = 0.8, CH₂Cl₂); The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak ID column; Hexane/i-PrOH = 99:1; flow rate 0.5 mL/min, 254 nm wave length UV; minor t_R = 14.004 min, major t_R = 11.924 min. All characterization data match those reported.¹⁵


(*R*)-1,1,1-trifluoro-2-(4-methoxyphenyl)-4-phenylbut-3-yn-2-ol (3ea): Product 3ea was prepared using the general procedure to provide a pale yellow oil (86% yield, 97% ee); $[\alpha]_D^{24} = +22.7$ (c = 0.6, CH₂Cl₂); The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak IB column; Hexane/i-PrOH = 98:2; flow rate 1 mL/min, 254 nm wave length UV; minor t_R = 12.240 min, major t_R = 22.694 min. All characterization data match those reported.¹⁴

1,1,1-trifluoro-4-phenyl-2-(p-tolyl)but-3-yn-2-ol (3fa): Product **3fa** was prepared using the general procedure to provide a pale yellow oil (86% yield, 97% ee); $[\alpha]_D^{24} = +22.4$ (c = 0.6, CH₂Cl₂); The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak ID column; Hexane/i-PrOH = 99:1; flow rate 1 mL/min, 254 nm wave length UV; minor t_R = 8.663 min, major t_R = 7.225 min. All characterization data match those reported.¹⁴

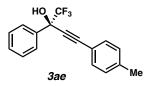


2-(3-bromophenyl)-1,1,1-trifluoro-4-phenylbut-3-yn-2-ol (3ga) : Product **3ga** was prepared using the general procedure to provide a pale yellow oil (92% yield, 85% ee); $[\alpha]_D^{24} = +23.0$ (c = 0.7, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.74 (d, 8 Hz, 1H), 7.53 (m, 3H), 7.35 (m, 3H), 7.29 (t, 8 Hz, 1H), 3.25 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 137.6, 132.8, 132.2, 130.44, 129.9, 128.6, 126.1, 125.2, 122.5, 121.4, 120.7, 88.7, 83.8, 73.1, 72.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.08; IR (Neat) 3547, 3066, 2233, 1594, 1570, 1490, 1473, 1444, 1423, 1348, 1246, 1168, 1111, 1074, 1012, 997, 937, 884, 782, 755, 735, 708, 687; HRMS (EI) Calcd. for C₁₆H₁₀BrF₃O: 353.9867, Found: 353.9871. The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak ID column; Hexane/i-PrOH = 99:1; flow rate 0.5 mL/min, 254 nm wave length UV; minor t_R = 12.137 min, major t_R = 11.398 min.

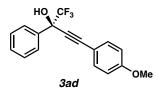


1,1,1-trifluoro-2-(2-fluorophenyl)-4-phenylbut-3-yn-2-ol (3ha): Product **3ha** was prepared using the general procedure to provide a pale yellow oil (70% yield, 87% ee);

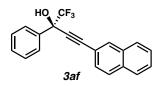
 $[α]_D^{24}$ = +10.6 (c = 0.2, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (m, 1H), 7.53 (m, 2H), 7.32 (m, 4H), 7.11(m, 2H), 3.55 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 162.4, 158.9, 132.2, 131.8, 131.7, 129.9, 129.6, 128.5, 124.3, 124.2, 121.0, 117.0, 116.7, 88.2, 83.1, 72.4, 71.9; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.24, -110.69; IR (neat) 3576, 2927, 2235, 1655, 1613, 1585, 1489, 1453, 1377, 1249, 1228, 1174, 1153, 1120, 1000, 1010, 922, 823, 755, 740, 711, 689; HRMS (EI) Calcd. for C₁₆H₁₀F₄O: 294.0668, Found: 294.0670; The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak ID column; Hexane/i-PrOH = 99:1; flow rate 1 mL/min, 254 nm wave length UV; minor t_R = 7.523 min, major t_R = 6.467 min.

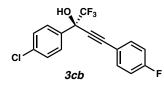


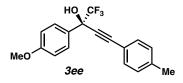
(*R*)-1,1,1-trifluoro-2-phenyl-4-(p-tolyl)but-3-yn-2-ol (3ab) : Product 3ab was prepared using the general procedure to provide a pale yellow oil (98% yield, 91% ee); $[\alpha]_D^{24} =$ +18.0 (c = 0.2, CH₂Cl₂); The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak IB column; Hexane/i-PrOH = 98:2; flow rate 1 mL/min, 254 nm wave length UV; minor t_R = 12.079 min, major t_R = 8.448 min. All characterization data match those reported.¹⁵

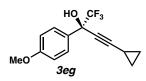


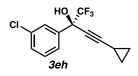
(*R*)-4-(4-bromophenyl)-1,1,1-trifluoro-2-phenylbut-3-yn-2-ol (3ac): Product 3ac was prepared using general procedure to provide a pale yellow oil (90% yield, 91% ee); $[\alpha]_D^{24}$ = +29.9 (c = 0.7, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (m, 2H), 7.38(m, 7H), 3.19(s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 135.1, 133.6, 131.9, 129.7, 128.4, 127.2, 125.3, 124.2, 121.5, 119.9, 87.1, 85.6, 73.7, 73.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.06; IR (neat) 3566, 2926, 2360, 2234, 1605, 1587, 1452, 1394, 1361, 1248, 1166, 1116, 1098, 1064, 1012, 932, 906, 822, 761, 729, 696, 668; HRMS (EI) Calcd. for


 $C_{16}H_{10}BrF_{3}O$: 353.9867, Found: 353.9868; The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak IB column; Hexane/i-PrOH = 98:2; flow rate 1 mL/min, 254 nm wave length UV; minor t_R = 13.405 min, major t_R = 9.004 min.

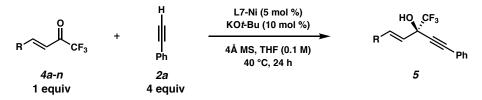

(*R*)-1,1,1-trifluoro-2-phenyl-4-(p-tolyl)but-3-yn-2-ol (3ae) : Product 3ae was prepared using general procedure to provide a pale yellow oil (94% yield, 90% ee); $[\alpha]_D^{24} = +26.5$ (c = 0.6, CH₂Cl₂); The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak IB column; Hexane/i-PrOH = 98:2; flow rate 1 mL/min, 254 nm wave length UV; minor t_R = 10.213 min, major t_R = 7.287 min. All characterization data match those reported.¹⁵


(*R*)-1,1,1-trifluoro-4-(4-methoxyphenyl)-2-phenylbut-3-yn-2-ol (3ad): Product 3ad was prepared using general procedure to provide a pale yellow oil (99% yield, 93% ee); $[\alpha]_D^{24} = +26.7$ (c = 0.2, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.81 (m, 2H), 7.41 (m, 5H), 6.86 (m, 2H), 3.83 (s, 3H), 3.12 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 160.6, 135.6, 133.7, 129.5, 128.3, 127.3, 114.2, 113.0, 88.3, 83.3, 73.7, 73.2, 55.4, 29.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.19; IR (neat) 3428, 2923, 2230, 1605, 1570, 1510, 1451, 1359, 1294, 1248, 1172, 1108, 1065, 1016, 933, 907, 832, 764, 706; HRMS (EI) Calcd. for C₁₇H₁₃F₃O₂: 306.0868, Found: 306.0869; The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak IB column; Hexane/i-PrOH = 98:2; flow rate 1 mL/min, 254 nm wave length UV; minor t_R = 17.337 min, major t_R = 12.175 min.

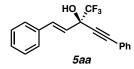

(*R*)-1,1,1-trifluoro-4-(naphthalen-2-yl)-2-phenylbut-3-yn-2-ol (3af): Product 3af was prepared using general procedure to provide a pale orange solid (89% yield, 89% ee); $[\alpha]_D^{24} = +2.59$ (c = 0.6, CH₂Cl₂); ¹H NMR (300 MHz, CDCl3) δ 8.09 (s, 1H), 7.81 (m, 5H), 7.47 (m, 6H), 3.23 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 135.5, 133.5, 132.9, 132.7, 129.7, 128.4, 128.3, 128.2, 128.0, 127.9, 127.4, 127.3, 127.0, 125.5, 121.7, 118.3, 88.6, 84.8, 73.8, 73.4, 29.8; ¹⁹F NMR (282 MHz, CDCl₃) δ –80.01; IR (neat) 3528, 3061, 2924, 2853, 2360, 2228, 1595, 1501, 1488, 1450, 1360, 1226, 1168, 1097, 1063, 1005, 906, 868, 822, 767, 751, 700, 663; HRMS (EI) Calcd. for C₂₀H₁₃F₃O: 326.0918, Found: 326.0918; The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak IB column; Hexane/i-PrOH = 98:2; flow rate 1 mL/min, 254 nm wave length UV; minor t_R = 16.764 min, major t_R = 11.734 min.


(*R*)-2-(4-chlorophenyl)-1,1,1-trifluoro-4-(4-fluorophenyl)but-3-yn-2-ol (3cb) : Product 3cb was prepared using general procedure to provide a pale yellow oil (92% yield, 89% ee); $[\alpha]_D^{24} = +14.6$ (c = 0.7, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, 9 Hz, 2H), 7.49 (m, 2H), 7.40 (m, 2H), 7.03 (m, 2H), 3.10 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 165.1, 161.7, 135.9, 134.3, 134.2, 133.8, 128.7, 128.6, 125.2, 121.4, 116.9, 116.2, 115.9, 87.4, 83.8, 73.3, 72.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.27, -108.15; IR (neat) 3453, 2928, 2235, 1706, 1652, 1601, 1507, 1491, 1406, 1359, 1233, 1184, 1121, 1093, 1010, 949, 917, 765, 730, 717, 694; HRMS (EI) Calcd. for C₁₆H₉ClF₄O: 328.0278, Found: 328.0278; The enantiomeric excess was determined by HPLC through chiral HPLC analysis: Daicel Chiralpak IB column; Hexane/i-PrOH = 98:2; flow rate 1 mL/min, 254 nm wave length UV; minor t_R = 9.181 min, major t_R = 7.976 min.

(*R*)-1,1,1-trifluoro-2-(4-methoxyphenyl)-4-(p-tolyl)but-3-yn-2-ol (3ee): Product 3ee was prepared using general procedure to provide a pale yellow oil (92% yield, 96% ee); $[\alpha]_D^{24} = +17.5$ (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak IB column; Hexane/i-PrOH = 98:2; flow rate 1 mL/min, 254 nm wave length UV; minor t_R = 28.064 min, major t_R = 9.684 min. All characterization data match those reported.¹⁵

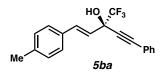


(*R*)-4-cyclopropyl-1,1,1-trifluoro-2-(4-methoxyphenyl)but-3-yn-2-ol (3eg): Product 3eg was prepared using general procedure to provide a pale yellow solid (93% yield, 96% ee); $[\alpha]_D^{24} = +3.84$ (c = 0.3, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, 9 Hz, 2H), 6.89 (m, 2H), 3.82 (s, 3H), 2.93 (s, 1H), 1.26 (m, 1H), 0.76 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 160.4, 128.6, 127.9, 125.4, 121.6, 113.5, 92.5, 71.3, 55.4, 8.5; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.69; IR (neat) 2994, 2931, 2828, 1605, 1573, 1505, 1458, 1431, 1396, 1345, 1249, 1204, 1078, 970, 923, 818, 781, 733, 713, 687; HRMS (EI) Calcd. for C₁₄H₁₃F₃O₂: 270.0868, Found: 270.0868; The enantiomeric excess was determined by HPLC through chiral HPLC analysis: Daicel Chiralpak ID column; Hexane/i-PrOH = 99:1; flow rate 1 mL/min, 254 nm wave length UV; minor t_R = 12.873 min, major t_R = 11.879 min.

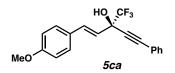


(*R*)-2-(3-chlorophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yn-2-ol (3eh): Product 3eh was prepared using general procedure to provide a pale yellow oil (95% yield, 80% ee); $[\alpha]_D^{24} = +2.4$ (c = 0.3, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.70 (s, 1H), 7.58 (m, 1H), 7.30 (m, 2H), 2.95 (s, 1H), 1.32 (m, 1H), 0.78 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 137.7, 134.2, 129.6, 129.4, 127.6, 125.5, 93.2, 72.7, 72.1, 70.6, 29.8, 8.6, 0.6 ¹⁹F NMR (282 MHz, CDCl₃) δ -80.46; IR (neat) 3458, 3016, 2441, 1597, 1578, 1475, 1428, 1364, 1261, 1165, 1106, 1076, 1027, 943, 925, 884, 814, 787, 721, 688; HRMS (EI) Calcd. for $C_{13}H_{10}ClF_{3}O$: 274.0323, Found: 274.0372; The enantiomeric excess was determined by chiral HPLC analysis: Daicel Chiralpak IB column; Hexane/i-PrOH = 99:1; flow rate 1 mL/min, 254 nm wave length UV; minor t_{R} = 9.858 min, major t_{R} = 9.287 min.

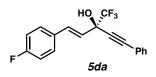
Procedure for Enantioselective Alkynylation of Vinyl Trifluoromethyl Ketones



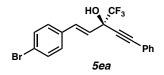
n = number of reactions. All reactions were set-up in a N₂-filled glovebox. To a vial containing L7-Ni (8.6n mg, 0.01n mmol, 0.05 equiv) was added KOt-Bu (2.24n mg, 0.02 n mmol, 0.1 equiv) in THF (1.6n mL). The resulting solution was stirred until the solids were fully dissolved. To a new 4 dram vial was added 4 Å MS (32 mg) and phenylacetylene (88 μ L, 0.8 mmol, 4.0 equiv). The L7-Ni + KOt-Bu solution (1.6 mL) was then added to this vial, and the solution was stirred for 30 min. The vinyl trifluoromethylketone (0.2 mmol, 1.0 equiv) in THF (0.8 mL) was then added and the reaction was stirred at 40 °C for 24 h. The reaction was then quenched with sat. NH₄Cl solution and the aqueous layer was extracted three times with ethyl acetate. The combined organic extracts were dried with sodium sulfate and concentrated by rotary evaporator. The crude oil was then purified by column chromatography to afford the desired product.

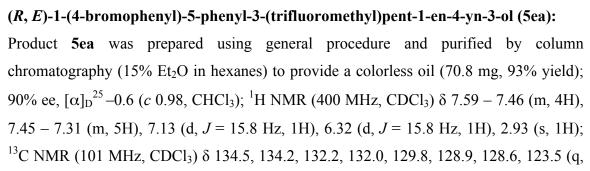

(*R*,*E*)-1,5-diphenyl-3-(trifluoromethyl)pent-1-en-4-yn-3-ol (5aa). Product 5aa was purified by column chromatography (8% EtOAc in hexanes) to provide a colorless oil (51.8 mg, 86% yield); 90% ee, $[\alpha]_D^{25}$ +11.8 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.48 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.45 – 7.27 (m, 6H), 7.21 (d, *J* = 15.8 Hz, 1H), 6.35 (d, *J* = 15.8 Hz, 1H), 2.91 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 135.8, 135.3, 132.2, 129.7, 129.0, 128.9, 128.6, 127.4, 123.6 (d, *J* = 285.3 Hz),

122.4, 121.1, 88.7, 82.7, 72.4 (q, J = 32.9 Hz);¹⁹F NMR (282 MHz, CDCl₃) δ 80.72 IR (Neat Film, NaCl) 3412, 3030, 2924, 1491, 1445, 1249, 1187, 1130, 1056, 966, 753, 690 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₈H₁₂F₃ [M-OH]⁺: 285.0886 found 285.0883; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralpak OD-H column, $\lambda = 254$ nm, t_R (min): major = 3.89, minor = 4.43.

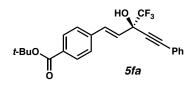


(*R*,*E*)-5-phenyl-1-(*p*-tolyl)-3-(trifluoromethyl)pent-1-en-4-yn-3-ol (5ba):

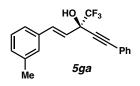

Product **(5ba)** was prepared using general procedure and purified by column chromatography (10% EtOAc in hexanes) to provide a colorless oil (62.2 mg, 98% yield); 92% ee, $[\alpha]_D^{25}$ +8.5 (*c* 0.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.46 – 7.32 (m, 5H), 7.23 – 7.15 (m, 3H), 6.31 (d, *J* = 15.8 Hz, 1H), 2.96 (s, 1H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 135.7, 132.5, 132.2, 129.63, 129.55, 128.6, 127.3, 123.6 (q, *J* = 285.3 Hz), 121.3, 121.1, 88.7, 82.8, 72.5 (q, *J* = 32.8 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ –80.72; IR (Neat Film, NaCl) 3412, 2924, 1654, 1515, 1491, 1444, 1361, 1249, 1186, 1131, 1054, 968, 797, 756, 727, 689 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₉H₁₄F₃ [M-OH]⁺: 299.1042 found 299.1041; SFC Conditions: 6% IPA, 2.5 mL/min, Chiralpak OD-H column, λ = 254 nm, t_R (min): major = 14.12, minor = 15.02.



(*R*,*E*)-1-(4-methoxyphenyl)-5-phenyl-3-(trifluoromethyl)pent-1-en-4-yn-3-ol (5ca): Product (5ca) was prepared using general procedure and purified by column chromatography (10% EtOAc in hexanes) to provide a colorless oil (63.9 mg, 98% yield); 92% ee, $[\alpha]_D^{25}$ +7.7 (*c* 0.97, CHCl₃); ¹H NMR (400 MHz, CDCl₃ δ 7.58 – 7.50 (m, 2H), 7.46 – 7.32 (m, 5H), 7.15 (d, *J* = 15.8 Hz, 1H), 6.94 – 6.85 (m, 2H), 6.20 (dd, *J* = 15.8, 0.7 Hz, 1H), 3.83 (s, 3H), 2.92 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 135.3, 132.2, 129.6, 128.7, 128.6, 128.0, 125.0, 122.2, 121.2, 120.1, 114.3, 88.6, 82.9, 72.5 (q, 32.8 Hz), 55.5; ¹⁹F NMR (282 MHz, CDCl₃) δ –80.73; IR (Neat Film, NaCl) 3411, 2936, 2840, 1654, 1608, 1513, 1466, 1444, 1422, 1250, 1176, 1132, 1106, 1059, 967, 850, 824, 803, 757, 728, 690 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₉H₁₄F₃O [M-OH]⁺: 315.0991 found 315.0993; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralpak OD-H column, λ = 254 nm, t_R (min): major = 5.17, minor = 5.42.

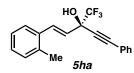


(*R*, *E*)-1-(4-fluorophenyl)-5-phenyl-3-(trifluoromethyl)pent-1-en-4-yn-3-ol (5da): Product 5da was prepared using general procedure and purified by column chromatography (8% EtOAc in hexanes) to provide a colorless oil (61.7 mg, 92% yield); 91% ee, $[\alpha]_D^{25}$ +12.0 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 8.1, 1.6 Hz, 2H), 7.45 (dd, *J* = 8.7, 5.3 Hz, 2H), 7.42 – 7.34 (m, 3H), 7.16 (d, *J* = 15.8 Hz, 1H), 7.06 (t, *J* = 8.7 Hz, 2H), 6.25 (d, *J* = 15.8 Hz, 1H), 2.92 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 161.9, 134.6, 132.2, 131.5 (q, *J* = 3.3 Hz), 129.7, 129.1 (d, *J* = 8.2 Hz) 128.6, 125.0, 122.2, 121.0, 116.0, 115.8, 88.8, 82.7, 72.3 (q, *J* = 32.9 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -80.76, -112.35; IR (Neat Film, NaCl) 3401, 3056, 2927, 1602, 1510, 1492, 1444, 1362, 1234, 1187, 1159, 1130, 1094, 1055, 967, 854, 826, 808, 757, 728, 690 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₈H₁₁F₄ [M-OH]⁺: 303.0791 found 303.0794; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 254 nm, t_R (min): major = 7.83, minor = 10.52.

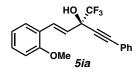


J = 285.4 Hz), 123.1, 123.0, 120.9, 88.9, 82.5, 72.3 (q, J = 33.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ –80.71; IR (Neat Film, NaCl) 3400, 1489, 1248, 1187, 1130, 1056, 1010, 967, 816, 756, 690 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₈H₁₁BrF₃O [M-OH]⁺: 362.9991 found 362.9984; SFC Conditions: 8% IPA, 2.5 mL/min, Chiralpak OD-H column, $\lambda = 254$ nm, t_R (min): major = 12.79, minor = 13.56.

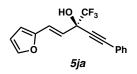
tert-butyl(R,E)-4-(3-hydroxy-5-phenyl-3-(trifluoromethyl)pent-1-en-4-yn-1-


yl)benzoate (5fa) Product 5fa was prepared using general procedure and purified by column chromatography (15% EtOAc in hexanes) to provide a colorless oil (65.9 mg, 82% yield); 89% ee, $[\alpha]_D^{25}$ -10.4 (*c* 0.95, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 2H), 7.58 – 7.47 (m, 4H), 7.45 – 7.32 (m, 3H), 7.22 (d, J = 15.8 Hz, 1H), 6.41 (d, J = 15.8 Hz, 1H), 2.95 (s, 1H), 1.60 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 139.3, 134.6, 132.2, 132.0, 130.0, 129.7, 128.6, 127.1, 125.0, 124.8, 123.5 (q, J = 285.5 Hz), 88.7, 82.6, 81.6, 72.2 (q, J = 32.9 Hz), 28.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.66 IR (Neat Film, NaCl) 3402, 2979, 1711, 1691, 1608, 1478, 1492, 1445, 1394, 1370, 1317, 1299,1250, 1184, 1127, 1070, 1018, 972, 846, 757, 691, 613 cm⁻¹; HRMS (MM) *m/z* calc'd for C₂₃H₂₀F₃O₂ [M-OH]⁺: 385.1410 found 385.1409; SFC Conditions: 10% IPA, 2.5 mL/min, Chiralpak IC column, $\lambda = 210$ nm, t_R (min): minor = 3.47, major = 4.28.

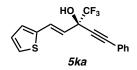
(*R*,*E*)-5-phenyl-1-(*m*-tolyl)-3-(trifluoromethyl)pent-1-en-4-yn-3-ol (5ga)


Product **5ga** was prepared using general procedure and purified by column chromatography (8% EtOAc in hexanes) to provide a colorless oil (61.2 mg, 97% yield); 90% ee, $[\alpha]_D^{25}$ +8.5 (*c* 0.88, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.43 – 7.31 (m, 3H), 7.30 – 7.21 (m, 3H), 7.17 (d, *J* = 15.8 Hz, 1H), 7.13 (d, *J* =

6.8 Hz, 1H), 6.32 (d, J = 15.8 Hz, 1H), 2.93 (s, 1H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 138.5, 135.9, 135.2, 132.2, 129.8, 129.7, 128.8, 128.6, 128.0, 126.1 (q, J = 229.9 Hz), 124.6, 122.2, 121.1, 88.7, 82.8, 72.5 (q, J = 32.8 Hz), 21.5; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.7; IR (Neat Film, NaCl) 3407, 2924, 1490, 1444, 1379, 1252, 1186, 1130, 1055, 1000, 966, 918, 844, 778, 756, 726, 689, 629 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₉H₁₄F₃ [M-OH]⁺: 299.1042 found 299.1045; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralpak OD-H column, $\lambda = 254$ nm, t_R (min): major = 3.83, minor = 4.20.

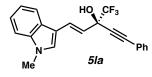

(*R*,*E*)-5-phenyl-1-(*o*-tolyl)-3-(trifluoromethyl)pent-1-en-4-yn-3-ol (5ha)

Product **5ha** was prepared using general procedure and purified by column chromatography (8% EtOAc in hexanes) to provide a colorless oil (57.8 mg, 92% yield); 86% ee, $[\alpha]_D^{25}$ +15.4 (*c* 0.87, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.46 (m, 4H), 7.45 – 7.33 (m, 3H), 7.25 – 7.16 (m, 3H), 6.24 (d, *J* = 15.7 Hz, 1H), 2.93 (s, 1H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.4, 134.5, 133.8, 132.2, 130.6, 129.7, 128.8, 128.6, 126.4, 126.3, 123.7, 123.6 (q, *J* = 285.3 Hz), 121.1, 88.7, 82.9, 72.6 (q, *J* = 32.8 Hz), 19.9; ¹⁹F NMR (282 MHz, CDCl₃) δ –80.73; IR (Neat Film, NaCl) 3411, 3061, 2926, 1600, 1490, 1462, 1444, 1381, 1261, 1248, 1185, 1133, 1098, 1058, 1000, 967, 817, 753, 690, 628 cm⁻¹; HRMS (MM) *m*/*z* calc'd for C₁₉H₁₄F₃ [M-OH]⁺: 299.1042 found 299.1043; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralpak OD-H column, $\lambda = 254$ nm, t_R (min): major = 3.58, minor = 4.33.

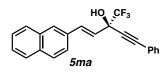


(*E*)-1-(2-methoxyphenyl)-5-phenyl-3-(trifluoromethyl)pent-1-en-4-yn-3-ol (5ia): Product 5ia was prepared using general procedure and purified by column chromatography (12% EtOAc in hexanes) to provide a colorless oil (59.6 mg, 92% yield); 86% ee, $[\alpha]_D^{25}$ +19.5 (*c* 0.97, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.50 (m, 3H), 7.48 (d, *J* = 7.7 Hz, 1H), 7.43 – 7.33 (m, 3H), 7.33 – 7.27 (m, 1H), 6.96 (t, *J* =

7.5 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 6.43 (d, J = 15.9 Hz, 1H), 3.88 (s, 3H), 2.88 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.5, 132.2, 131.0, 130.1, 129.6, 128.6, 128.1, 123.6 (q, J = 285.2 Hz), 124.2, 123.0, 121.3, 120.8, 111.4, 111.2, 88.6, 83.0, 72.8 (q, J = 32.7 Hz), 55.7; ¹⁹F NMR (282 MHz, CDCl₃) δ –80.66; IR (Neat Film, NaCl) 3429, 2940, 2360, 2237, 1599, 1490, 1465, 1248, 1185, 1136, 1103, 1048, 971, 754, 690 cm⁻¹; HRMS (MM) *m*/*z* calc'd for C₁₉H₁₄F₃O [M-OH]⁺: 315.09860 found 315.09993; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralpak OD-H column, $\lambda = 254$ nm, t_R (min): major = 4.95, minor = 5.67.



(*R*,*E*)-1-(4-bromophenyl)-5-phenyl-3-(trifluoromethyl)pent-1-en-4-yn-3-ol (5ja): Product 5ja was prepared using general procedure and purified by column chromatography (15% Et₂O in hexanes) to provide a colorless oil (52 mg, 89% yield); 90% ee, $[\alpha]_D^{25}$ -7.42 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.2 Hz, 2H), 7.45 – 7.32 (m, 4H), 6.99 (d, *J* = 15.6 Hz, 1H), 6.42 (m, 2H), 6.29 (d, *J* = 15.6 Hz, 1H), 2.85 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.1, 143.3, 132.2, 129.7, 128.6, 123.5 (q, *J* = 285.3 Hz), 123.5, 121.0, 120.6, 111.8, 111.2, 88.6, 82.6, 72.2 (q, *J* = 33.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ –80.78; IR (Neat Film, NaCl) 3429, 3060, 2926, 1661, 1600, 1564, 1491, 1445, 1400, 1300, 1266, 1249, 1188, 1154, 1127, 1056, 1016, 1000, 960, 928, 884, 844, 804, 757, 742, 728, 690, 673, 654, 612 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₆H₁₀F₃O [M-OH]⁺: 275.0678 found 275.0668; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralpak OJ-H column, $\lambda = 210$ nm, t_R (min): major = 3.12, minor = 3.86.

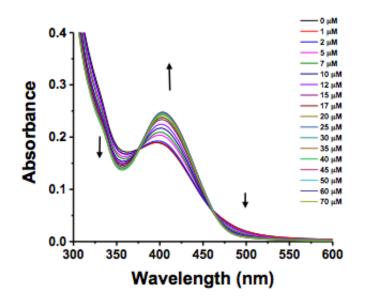


(*R*,*E*)-5-phenyl-1-(thiophen-2-yl)-3-(trifluoromethyl)pent-1-en-4-yn-3-ol (5ka): Product 5ka was prepared using general procedure and purified by column chromatography (8% EtOAc in hexanes) to provide a colorless oil (51.8 mg, 84% yield); 90% ee, $[\alpha]_D^{25}$ +25.8 (*c* 0.88, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 8.0,

1.5 Hz, 2H), 7.45 – 7.30 (m, 5H), 7.28 (dd, J = 4.8, 1.5 Hz, 1H), 7.21 (d, J = 15.7 Hz, 1H), 6.20 (d, J = 15.7 Hz, 1H), 2.94 (s, 1H);¹³C NMR (101 MHz, CDCl₃) δ 137.9, 132.2, 129.8, 129.7, 128.6, 126.7, 125.2, 125.0, 122.1, 121.0, 88.7, 82.7, 72.4 (q, J = 32.9 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ –80.78; IR (Neat Film, NaCl) 3406, 2924, 1656, 1491, 1444, 1358, 1308, 1249, 1186, 1126, 1054, 1000, 964, 868, 775, 757, 725, 690, 606 cm⁻¹; HRMS (MM) *m*/*z* calc'd for C₁₆H₁₀F₃S [M-OH]⁺: 291.045 found 291.045; SFC Conditions: 15% IPA, 2.5 mL/min, Chiralpak OD-H column, $\lambda = 210$ nm, t_R (min): major = 4.20, minor = 4.50.

(*R*,*E*)-1-(1-methyl-1*H*-indol-3-yl)-5-phenyl-3-(trifluoromethyl)pent-1-en-4-yn-3-ol (5la): Product 5la was prepared using general procedure and purified by column chromatography (30% EtOAc in hexanes) to provide a yellow oil (32.2 mg, 63% yield); 96% ee, $[\alpha]_D^{25}$ +4.2 (*c* 0.95 CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 8.1 Hz, 2H), 7.30 (dd, *J* = 11.5, 4.2 Hz, 4H), 7.26 – 7.19 (m, 2H), 7.18 – 7.12 (m, 2H), 6.22 (d, *J* = 15.8 Hz, 1H), 3.71 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 137.8, 132.2, 130.3, 129.5, 128.8, 128.6, 126.1, 122.6, 121.4, 120.6, 120.3, 117.6, 111.9, 88.6, 83.3, 73.13 (q, *J* = 32.8 Hz), 33.1, 29.9; ¹⁹F NMR (282 MHz, CDCl₃) δ –80.83; IR (Neat Film, NaCl) 3382, 2922, 1651, 1535, 1491, 1444, 1378, 1333, 1255, 1184, 1125, 1060, 960, 787, 758, 741, 691, 645 cm⁻¹; HRMS (MM) *m/z* calc'd for C₂₁H₁₅F₃N [M-OH]⁺: 338.1151 found 338.1151; SFC Conditions: 30% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): major = 6.29, minor = 7.80.

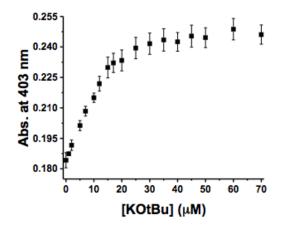
(*R*, *E*)-1-(naphthalen-2-yl)-5-phenyl-3-(trifluoromethyl)pent-1-en-4-yn-3-ol (5ma): Product 5ma was prepared using general procedure and purified by column chromatography (10% EtOAc in hexanes) to provide a colorless oil (67.7 mg, 96% yield); 92% ee, $[\alpha]_D^{25}$ +13.8 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.80 (m, 4H), 7.66 (dd, *J* = 8.7, 1.6 Hz, 1H), 7.58 (d, *J* = 6.3 Hz, 2H), 7.50 (d, *J* = 9.4 Hz, 2H), 7.46 – 7.34 (m, 4H), 6.47 (d, *J* = 15.8 Hz, 1H), 2.98 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 135.9, 133.7, 133.5, 132.7, 132.2, 129.7, 128.62, 128.60, 128.3, 128.2, 127.9, 126.7, 126.6, 123.2 (q, *J* = 110.0 Hz), 88.8, 82.8, 72.5 (q, *J* = 32.9 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ –80.62; IR (Neat Film, NaCl) 3400, 3057, 1652, 1491, 1444, 1361, 1252, 1186, 1126, 1054, 965, 894, 843, 810 cm⁻¹; HRMS (MM) *m/z* calc'd for C₁₈H₁₁BrF₃O [M-OH]⁺: 335.1042 found 335.1043; SFC Conditions: 8% IPA, 2.5 mL/min, Chiralpak IC column, $\lambda = 210$ nm, t_R (min): major = 6.56, minor = 7.11.



(*R*,4*E*,6*E*)-1,7-diphenyl-3-(trifluoromethyl)hepta-4,6-dien-1-yn-3-ol (5na): Product 5na was prepared using general procedure and purified by column chromatography (8% EtOAc in hexanes) to provide a colorless oil (28.1 mg, 43% yield); 91% ee, $[\alpha]_D^{25}$ +11.3 (*c* 0.67, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.47 – 7.26 (m, 8H), 6.99 (dd, *J* = 14.9, 10.4 Hz, 1H), 6.86 (dd, *J* = 15.4, 10.5 Hz, 1H), 6.74 (d, *J* = 15.5 Hz, 1H), 5.95 (d, *J* = 14.9 Hz, 1H), 2.85 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 136.6, 136.5, 135.9, 132.2, 129.7, 128.9, 128.6, 128.4, 126.9, 126.7, 125.6, 123.5 (q, *J* = 285.3 Hz), 121.1, 88.6, 82.7, 72.3 (q, *J* = 33.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ – 80.78; IR (Neat Film, NaCl) 3396, 3027, 2922, 2850, 1644, 1491, 1447, 1253, 1186, 1127, 1051, 990, 974, 828, 756, 726, 690 cm⁻¹; HRMS (MM) *m/z* calc'd for C₂₀H₁₄F₃ [M-OH]⁺: 311.1042 found 311.1037; SFC Conditions: 35% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): major = 3.3, minor =4.4.

UV-Vis Data for Metal Titration

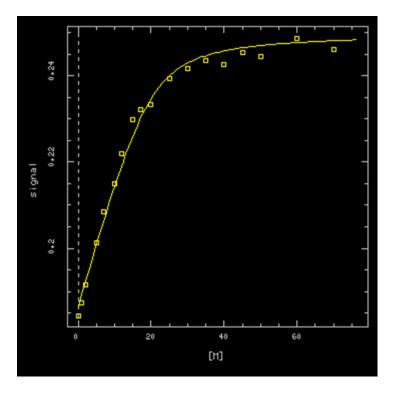
A sample solution containing L7-Ni (20 M) and different amounts of KO*t*-Bu (0, 1, 2, 5, 7, 10, 12, 15, 17, 20, 25, 30, 35, 40, 45, 50, 60, and 70 M) prepared in dry THF,


respectively. After incubation for 30 min at room temperature, UV-Vis spectra were recorded at 25 °C and each measurement was repeated thrice.

Isobestic point 1. 376 nm 2. 460 nm

Job plot

A solutions of L7-Ni (40 M) in THF were mixed with solutions of KOtBu in THF (40 M) at varying ratios. After incubation for 30 min at room temperature, UV-Vis spectra were recorded at 25 °C and each measurement was repeated thrice.



Association constant for the binding of L7-Ni and K+

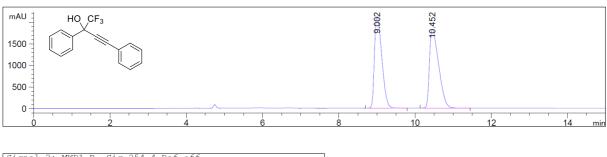
The program DynaFit was used for non-linear regression fitting of the titration data based on absorbance changes observed at 403 nm. From the result of Job plot, the fitting of titration data were performed as a 1:1 binding mode. The DynaFit scripts for the binding models used are provided below.

```
[task]
 task = fit
 data = equilibria
[mechanism]
 L + M \iff LM : K1 association
[constants]
 K1 = 0.5?
[concentrations]
 L = 20
[responses]
 L = 0.0092?
 LM = 0.0125
[data]
 variable M
 file C:\./Users/skang/Desktop/dynafit4-win/DynaFit4/input/titration.txt
[output]
 directory C:\./Users/skang/Desktop/dynafit4-win/DynaFit4/output
```

[end]

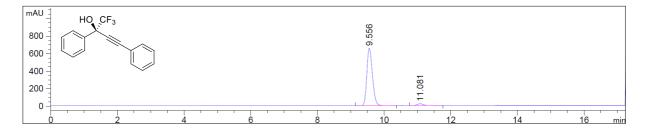
The association constant for the binding of L7-Ni and K+ ion. $K_a = 6.6 \times 10^5 \text{ M}^{-1}$.

References

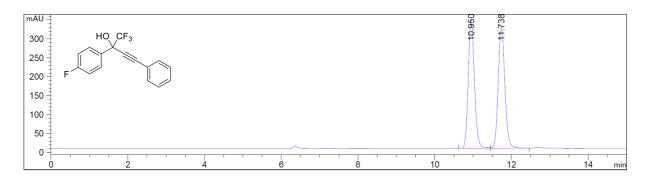

- 1. Bi, W.-Y.; Lü, X.-Q.; Chai, W.-L.; Song, J.-R.; Wong, W.-Y.; Wong, W.-K.; Jones, R. A. *Journal of Molecular Structure* **2008**, *891*, 450-455.
- Pärssinen, A.; Luhtanen, T.; Pakkanen, T.; Leskelä, M.; Repo, T. European Journal of Inorganic Chemistry 2010, 2010, 266-274.
- 3. Moreno, M.; Elgaher, W. A.; Herrmann, J.; Schläger, N.; Hamed, M. M.; Baumann, S.; Müller, R.; Hartmann, R. W.; Kirschning, A. *Synlett*, **2015**, *26*, 1175–1178.
- 4. Vazquez-Molina, D.; Pope, G. M.; Ezazi, A. A.; Mendoza-Cortes, J. L.; Harper, J. H.; Uribe-Romo, F. J. *Chem. Commun.* **2018**, *54*, 6947–6950.
- 5. Zhang, H-C.; Huang, W-S.; Pu, L. J. Org. Chem. 2001, 66, 481-487.
- 6. Mechler, M.; Latendorf, K.; Frey, W.; Peters, R. Organometallics 2013, 32, 112-130.
- 7. Kelly, CB.; Mercadante, MA.; Hamlin, TA.; Fletcher, MH. J. Org. Chem. 2012, 77, 8131-8141.
- 8. Zheng, C.; Li, Y.; Yang. Y.; Wang, H.; Cui, H.; Zhang, J.; Zhao, G. Adv. Synth. and Catal. 2009, 351, 1685–1691.
- 9. Ortega, A.; Manzano, R.; Uria, U.; Carrillo, L.; Reyes, E.; Tejero, T.; Merino, P.; Vicario, J. L. Angew. Chem. Int. Ed. 2018, 57, 8225–8229.
- 10. Wang, Y.; Han, J.; Chen, J.; Weiguo, C. Tetrahedron, 2015, 71, 8256-8262.
- 11. Sasaki, S.; Yamauchi, T.; Higashiyama, K. Tetrahedron Lett. 2010, 51, 2326–2328.
- 12. Nenajdenko, V. G.; Krasovsky, A. L.; Lebedev, M. V.; Balenkova, E. S. Synlett, 1997, 12, 1349–1350.
- 13. Sanz-Marco, A.; Blay, G.; Muñoz, M. C.; Pedro, J. R. Chem. Commun. 2015, 51, 8958-8961.
- 14. Motoki, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2007, 9, 2997-3000.
- 15. Zhang, G.-W.; Meng, W.; Ma, H.; Nie, J.; Zhang, W.-Q.; Ma, J.-A. Angew. Chem. Int. Ed. 2011, 50, 3538-3542.

HPLC and SFC data for Trifluoromethyl Alcohol Products:

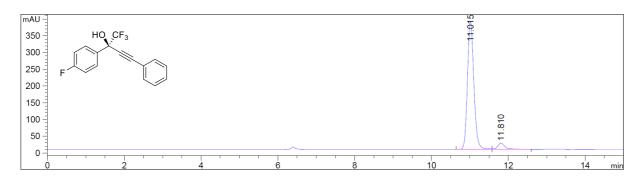
Racemic propargylic alcohols were prepared according to reported literature protocols.^{13,14}


HPLC data for Aryl Trifluoromethyl Ketones:

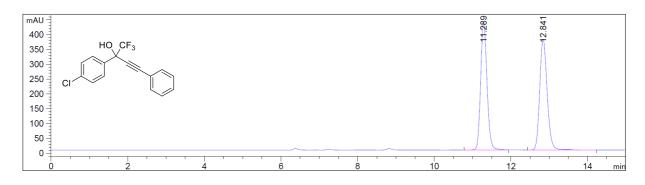
Racemic 3aa


Signa	al Z: MWI	DI B,	51g=254,	,4 ReI=OII		
		41		Area [mAU*s]	2	Area %
1	9.002	BV	0.2129	2.85165e4	2119.92139	48.4080
2	10.452	VB	0.2642	3.03921e4	1825.36560	51.5920
Total	s :			5.89086e4	3945.28699	

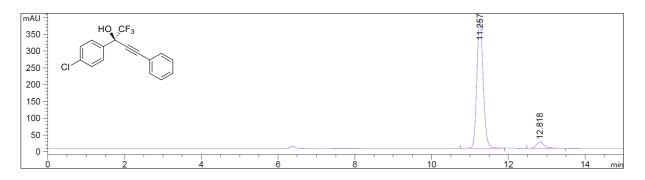
Enantioenriched 3aa


Signa	al 2: MWI	D1 В,	Sig=254,	4 Ref=off		
Peak #	RetTime [min]			Area [mAU*s]	2	Area %
1	9.556	BB	0.1813	7575.20215	653.19965	96.6815
2	11.081	BB	0.1965	260.01358	20.42832	3.3185
Total	ls :			7835.21573	673.62797	

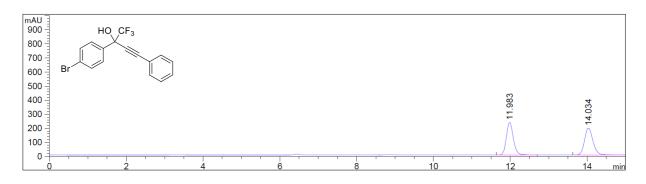
Racemic 3ba


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]	[min]	[mAU*s]	[mAU]	Area %
1 10.950 BV 2 11.738 VB	0.1752		338.24939	
Totals :		7642.61060	658.77139	

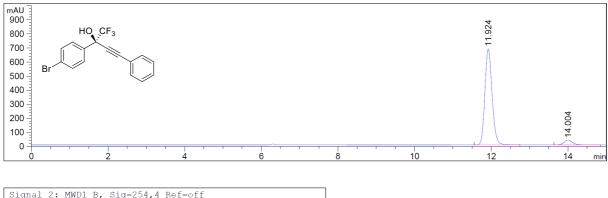
Enantioenriched 3ba


Signa	1 2: MWI	о1 В,	Sig=254,	4 Ref=off		
Peak I #	RetTime [min]		[min]		Height [mAU]	Area %
1	11.015	BV	0.1778	4391.09912	382.97543	95.0508
2	11.810	VB	0.1966	228.63799	17.94620	4.9492
Total:	s :			4619.73711	400.92163	

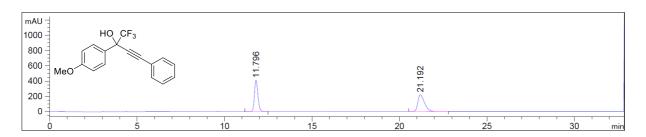
Racemic 3ca


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]	[min]	[mAU*s]	[mAU]	S
1 11.289 BV 2 12.841 VB	0.1786	4981.56006	431.86307	49.7393
Totals :		1.00153e4	806.43863	

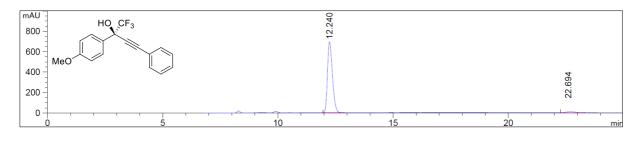
Enantioenriched 3ca


Signa	al 2: MWI	D1 B,	Sig=254,	4 Ref=off		
Peak #	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1				4376.18311 264.73257		
2	12.818	BV	0.2167	264.13231	18.74982	5.7043
Total	ls :			4640.91568	400.81779	

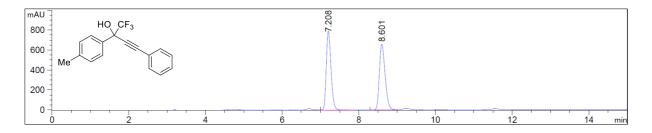
Racemic 3da


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]		Area [mAU*s]	Height [mAU]	Area %
1 11.983 BB 2 14.034 VB	0.1939	2885.78491 2887.32275		49.9867 50.0133
Totals :		5773.10767	421.68034	

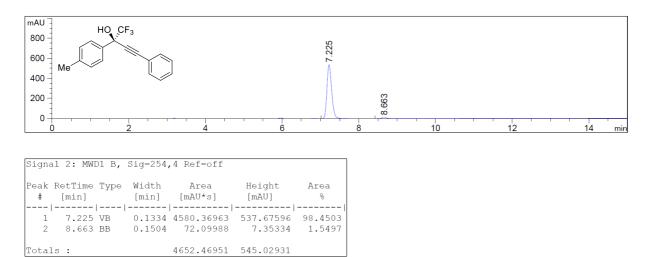
Enantioenriched 3da


SIGNAL Z: MWDI B,	51g=204,	,4 Kel=Oll			
Peak RetTime Type # [min]	[min]	[mAU*s]	Height [mAU]	Area %	
 1 11.924 BB			681.41754	94.5631	
2 14.004 BB	0.2339	509.27783	33.40222	5.4369	
Totals :		9367.09521	714.81976		

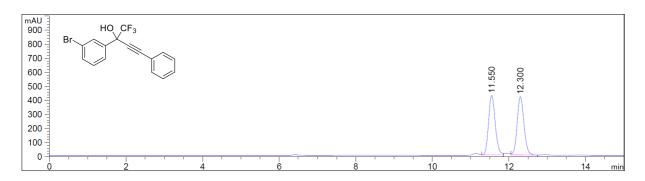
Racemic 3ea


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]	Width [min]		Height [mAU]	Area %
 1 11.796 BB 2 21.192 BB		5615.20752		
Totals :		1.13076e4	626.13878	

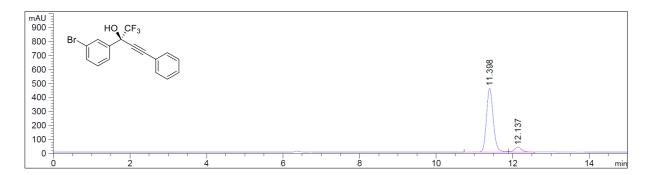
Enantioenriched 3ea


Signa	al 2: MWI	D1 B,	Sig=254	4 Ref=off		
#	[min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	12.240	MM T	0.2478	1.03469e4 217.14453		97.9445
Total		1414 1	0.4294	1.05640e4		2.0333

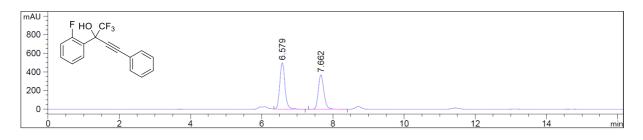
Racemic 3fa


				1 - 0 - 00		
Signal 2: MWD1 B, Sig=254,4 Ref=off						
Peak Re	etTime	Type	Width	Area	Height	Area
	[min]	71	[min]	[mAU*s]	[mAU]	8
	[[[[]]]]		[[[[]]]]	[1010 5]	[1010]	
1	7.208	VB	0.1318	6763.79443	790.41278	49.6057
2	8.601	BV	0.1660	6871.33252	657.30743	50.3943
_						
				1 0 00 5 1 4	1447 70001	
Totals	:			1.36351e4	1447.72021	

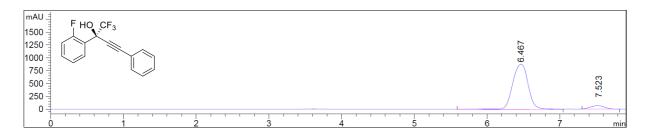
Enantioenriched 3fa


Racemic 3ga

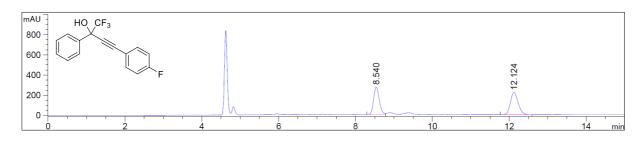
Totals :


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 11.550 BV 2 12.300 VB		 5098.31445 5102.57080		49.9791 50.0209
Totals :		1.02009e4	836.10858	

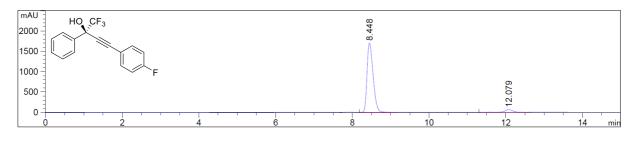
Enantioenriched 3ga


Peak	RetTime Ty	pe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	م
 1 2	 11.398 BV 12.137 VV		5573.68750 440.57138	455.13403	92.674

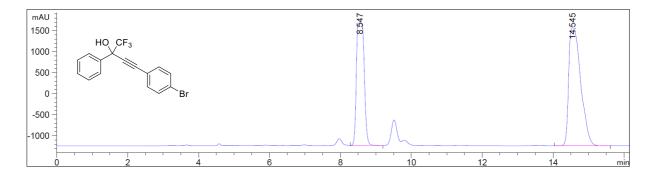
Racemic 3ha


Signal	2: MWI	о1 В,	Sig=254,	.4 Ref=off		
				Area [mAU*s]	-	Area %
1	6.579	BB	0.1575	5030.50830	499.48083	55.6302
2	7.662	BV	0.1671	4012.25366	368.32654	44.3698
Totals	:			9042.76196	867.80737	

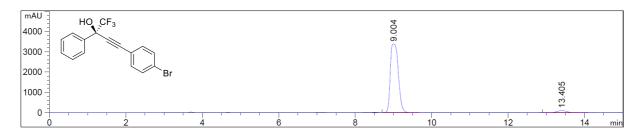
Enantioenriched 3ha


Signa	1 2: MWI	D1 B,	Sig=254,	4 Ref=off		
Peak #	RetTime [min]			Area [mAU*s]		Area %
1	6.467	MM T	0.2475	1.30589e4	879.53400	93.6053
2	7.523	MM T	0.2215	892.12994	67.11796	6.3947
Total	s:			1.39510e4	946.65195	

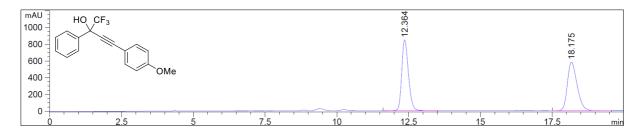
Racemic 3ab


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]		Area [mAU*s]	Height [mAU]	Area %
1 8.540 BV 2 12.124 BV		2771.67334 3095.34009		
Totals :		5867.01343	491.00531	

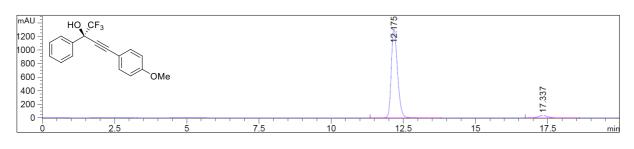
Enantioenriched 3ab


Signal 2: MWD1 B,	Sig=254	4 Ref=off		
Peak RetTime Type # [min]	Width [min]		J	Area %
1 8.448 VV 2 12.079 VV				
Totals :		1.94533e4	1765.04211	

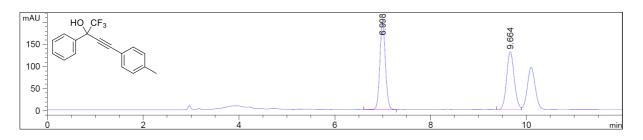
Racemic 3ac


Signal 2: MWD1 B,	Sig=254,	,4 Ref=off		
Peak RetTime Type # [min]	[min]	[mAU*s]		Area %
1 8.547 VB 2 14.545 BB	0.2459		2914.54517	40.3203 59.6797
Totals :		1.10231e5	5725.73145	

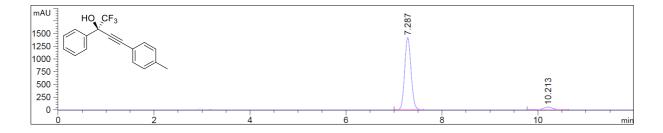
Enantioenriched 3ac


Signa	al 2: MWI	о1 в,	Sig=254,	4 Ref=off		
#	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	9.004	VV			3385.17822 104.20264	
Total	s:			5.04925e4	3489.38087	

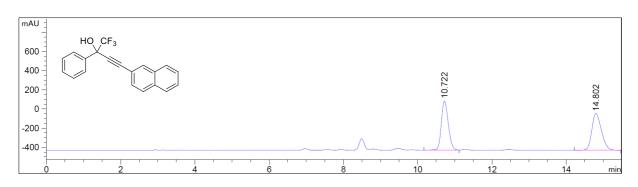
Racemic 3ad


Signal 2: 1	MWD1 B,	Sig=254,	4 Ref=off		
]	[min]	[mAU*s]	[mAU]	Area %
1 12.3	64 BV	0.2492	1.37259e4	846.13507	50.3008
2 18.1	75 BB	0.3607	1.35618e4	580.18530	49.6992
Totals :			2.72877e4	1426.32037	

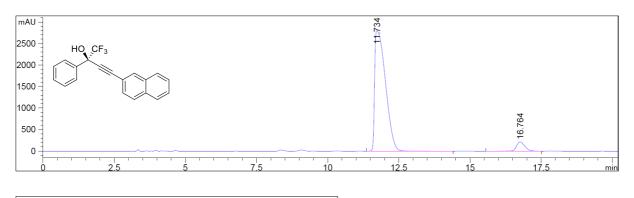
Enantioenriched 3ad


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 12.175 BV 2 17.337 BB	0.2292	1.93857e4		
Totals :		2.00525e4	1338.81763	

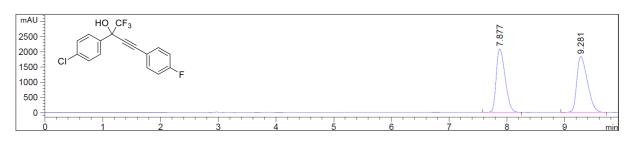
Racemic 3ae


:	Signal	2: MW1	D1 B,	Sig=254,	4 Ref=off		
1		etTime [min]			Area [mAU*s]	Height [mAU]	Area %
·	-						
	1	6.998	VV	0.1267	1602.97388	197.45538	52.4931
	2	9.664	BV	0.1732	1450.71130	130.96457	47.5069
	Totals	:			3053.68518	328.41995	

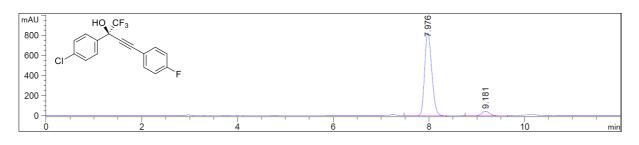
Enantioenriched 3ae


Signal 2: MWD1 B,	Sig=254,	,4 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 7.287 BV 2 10.213 VV		1.30561e4 647.19513		95.2771 4.7229
Totals :		1.37033e4	1473.58963	

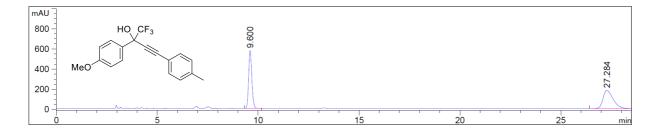
Racemic 3af


Signa	al 2: MWI	D1 B,	Sig=254,	4 Ref=off				
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %		
	10.722 14.802			6669.84424 6872.76123		49.2508 50.7492		
Total	Totals: 1.35426e4 896.95724							

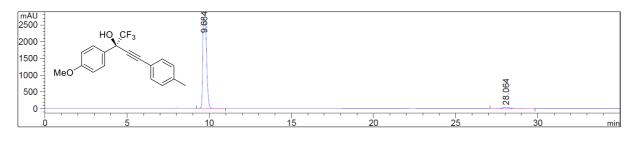
Enantioenriched 3af


Signa	1 2: MWI	О1 В,	Sig=254,	,4 Rei=oii		
Peak #	RetTime [min]	~ ~	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.734	BV	0.4197	7.37367e4	2795.73999	94.5055
2	16.764	BV	0.3041	4287.04248	215.23865	5.4945
Total	s:			7.80238e4	3010.97864	

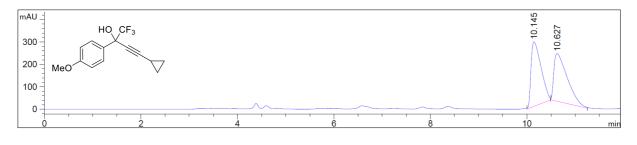
Racemic 3cb


Signal	2: MWD:	1 B,	Sig=254,	4 Ref=off		
Peak R #	etTime ([min]		[min]	Area [mAU*s]	[mAU]	Area %
-						
1	7.877	VV	0.1687	2.23440e4	2090.93481	48.8914
2	9.281 1	BB	0.2003	2.33573e4	1837.32886	51.1086
Totals	:			4.57013e4	3928.26367	

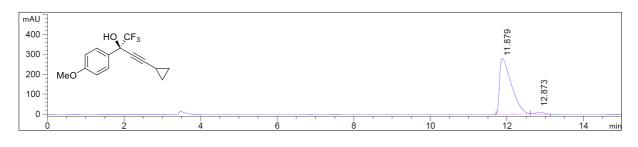
Enantioenriched 3cb


Signal	2: MWD:	1 В,	Sig=254,	4 Ref=off		
	etTime ? [min]	Гуре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
_				 8487.25586 510.86423		94.3225
Totals		U v	0.1750	8998.12009		3.0773

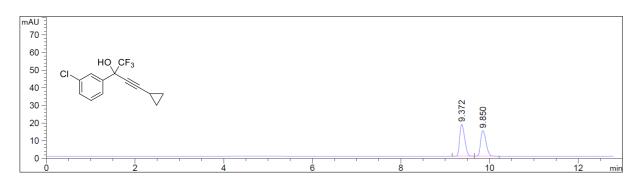
Racemic 3ee


Signal 2: MWD1 B,	Sig=254	,4 Ref=off					
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %			
1 9.600 VV	0.1712	6343.68701	572.83759	50.7212			
2 27.284 BBA	0.5220	6163.29248	180.65030	49.2788			
Totals : 1.25070e4 753.48788							

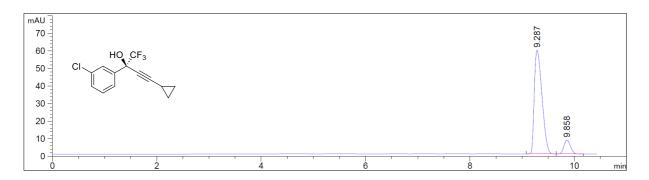
Enantioenriched 3ee


Signal 2: MWD1 B,	Sig=254,4	Ref=off		
Peak RetTime Type # [min]		Area [mAU*s]	Height [mAU]	Area %
1 9.684 VV 2 28.064 BB				
Totals :	4.	45806e4	2686.47131	

Racemic 3eg

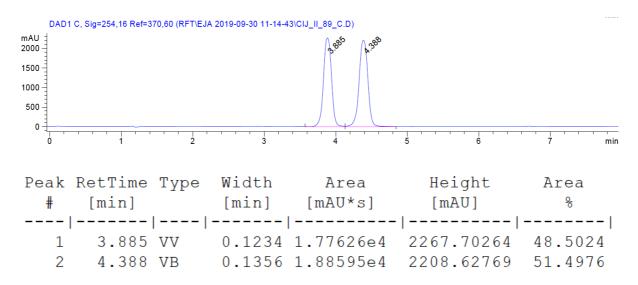

Signa	1 2: MWI	D1 B,	Sig=254,	4 Ref=off		
#	[min]		[min]	Area [mAU*s]	[mAU]	Area %
1	10.145	MM T	0.2390	4132.77051 4110.03418	288.21365	
Total	s:			8242.80469	501.44354	

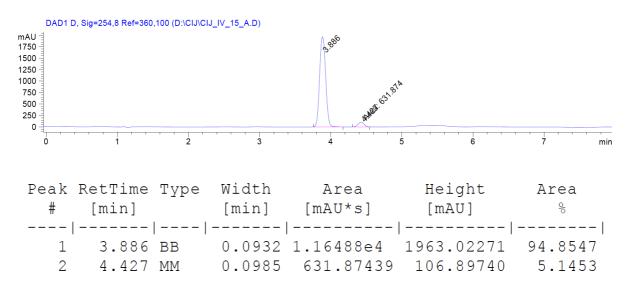
Enantioenriched 3eg


Signa	1 2: MWI	о1 В,	Sig=254,	4 Ref=off		
Peak #	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
	11 979	———— MM T	0 3534	5950.80176	280 63693	97 6302
_				144.44800		

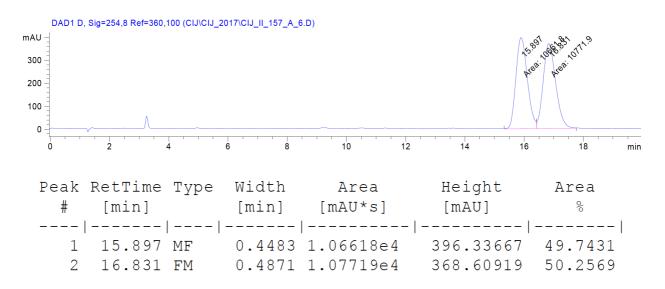
Racemic 3eh

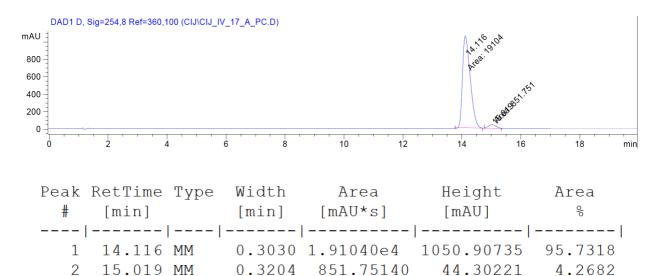
Signal	1: MWI	01 A,	Sig=254,	4 Ref=off		
	etTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
-	9.372 9.850				18.09298 14.46669	53.5707 46.4293
Totals	:			262.27235	32.55967	

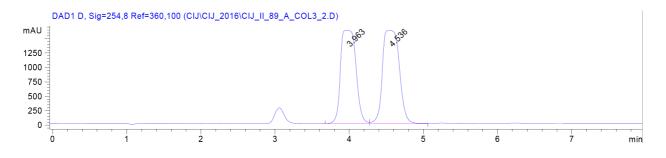

Enantioenriched 3eh


Signal	1: MWD1	A, Sig=254	,4 Ref=off		
1	etTime Ty [min]	ype Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2			603.86737 68.90726	 59.24526 7.96194	 89.7577 10.2423
Totals	:		672.77464	67.20720	

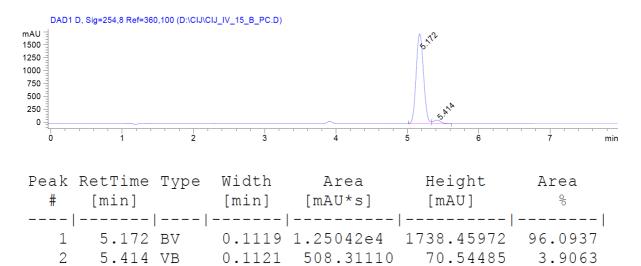
SFC data for Vinyl Trifluoromethyl Ketone Products:


Racemic 5aa

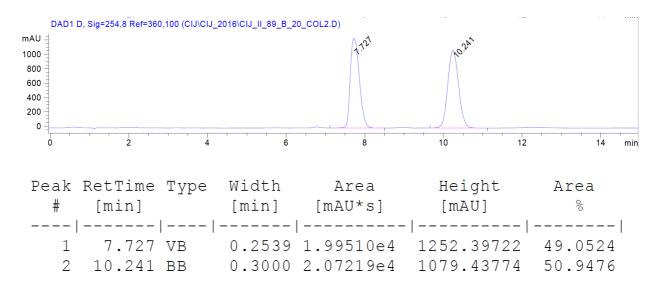

Enantioenriched 5aa


Racemic 5ba

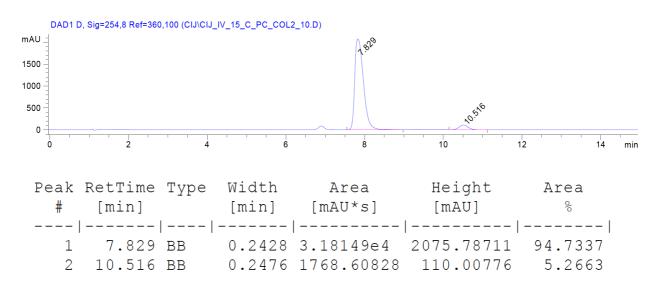
Enantioenriched 5ba

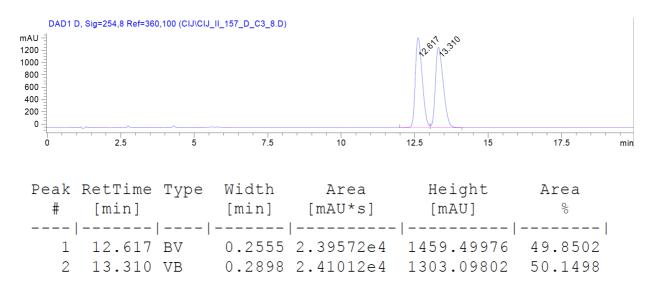


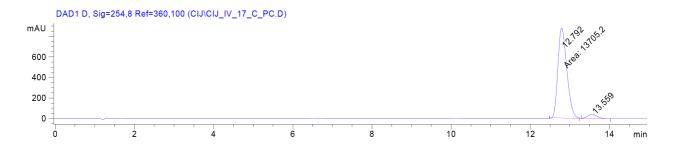
Racemic 5ca



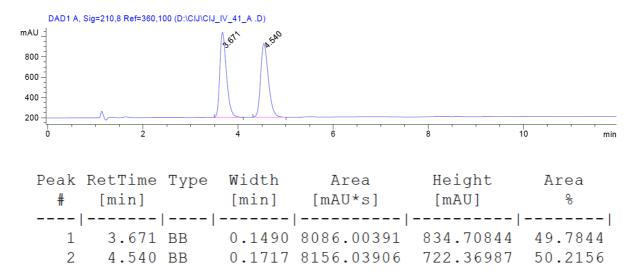
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	3.963	BV	0.2325	2.33956e4	1620.28918	47.7740
2	4.536	VV	0.2561	2.55758e4	1620.41089	52.2260


Enantioenriched 5ca

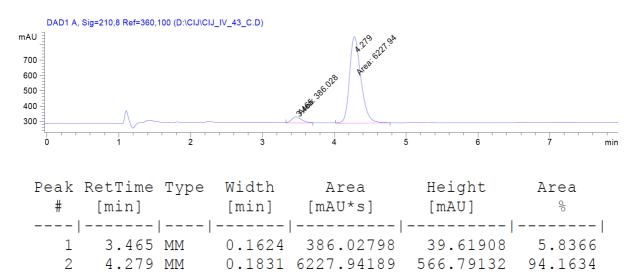

Racemic 5da


Enantioenriched 5da

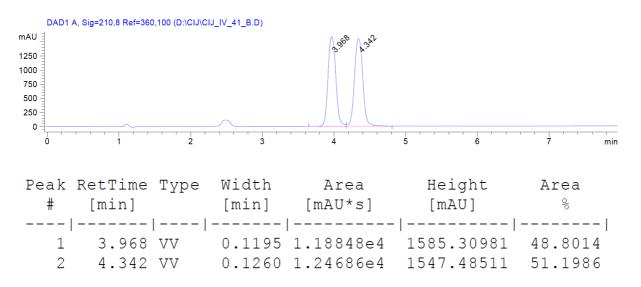
Racemic 5ea

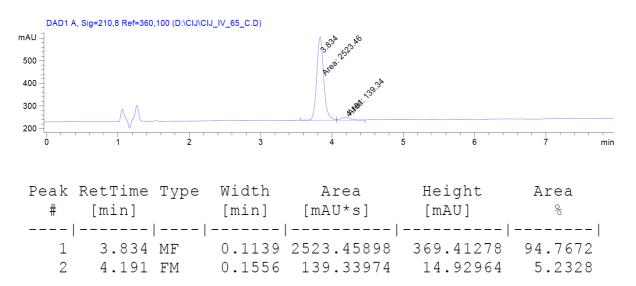


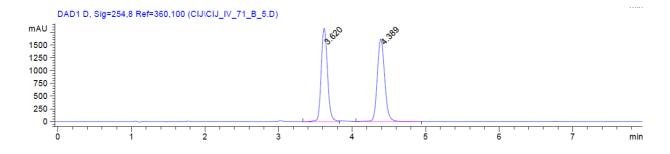
Enantioenriched 5ea



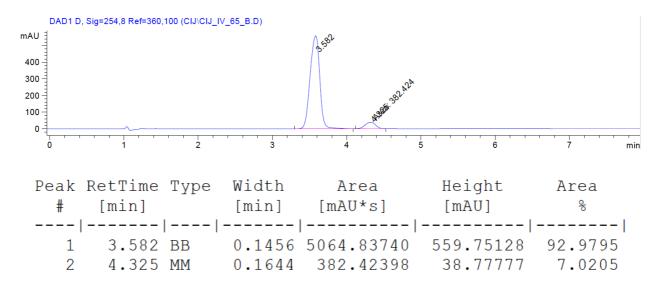
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	12.792	MM	0.2605	1.37052e4	876.92377	95.0351
2	13.559	VB	0.2631	715.99207	41.95095	4.9649


Racemic 5fa

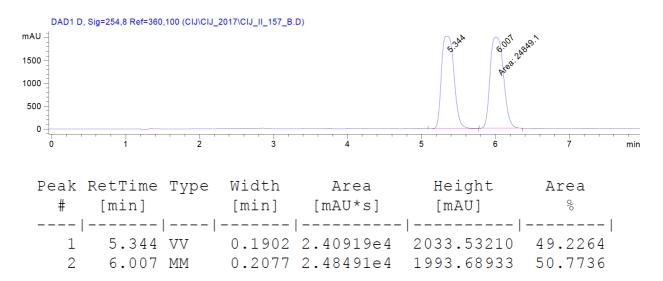

Enantioenriched 5fa


Racemic 5ga

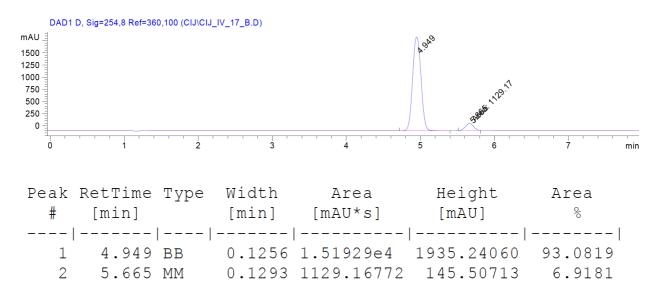
Enantioenriched 5ga

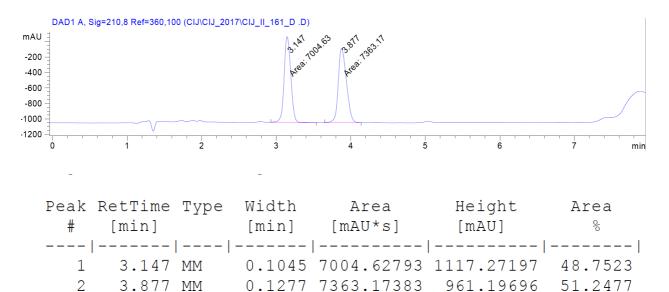


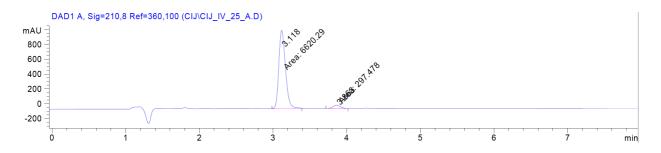
Racemic 5ha



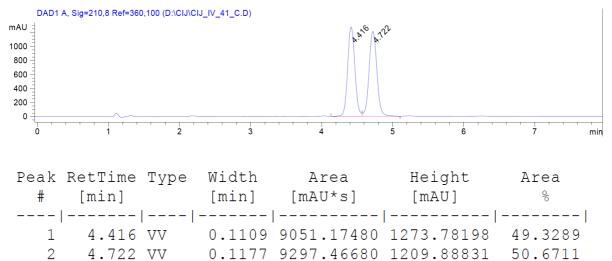
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	3.620	VV	0.0938	1.09643e4	1831.39258	48.9468
2	4.389	VV	0.1102	1.14361e4	1623.07410	51.0532


Enantioenriched 5ha

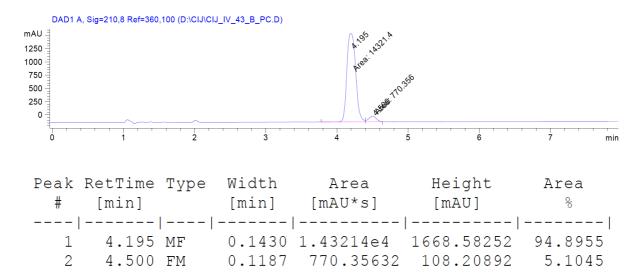

Racemic 5ia

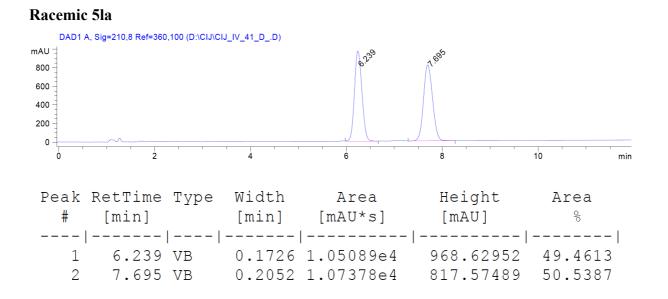

Enantioenriched 5ia

Racemic 5ja

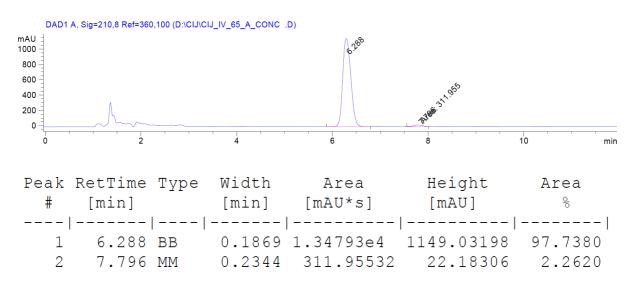


Enantioenriched 5ja

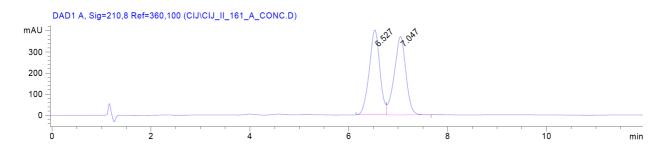



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	3.118	MM	0.1040	6620.28564	1060.52246	95.6998
2	3.863	MM	0.1079	297.47842	45.96951	4.3002

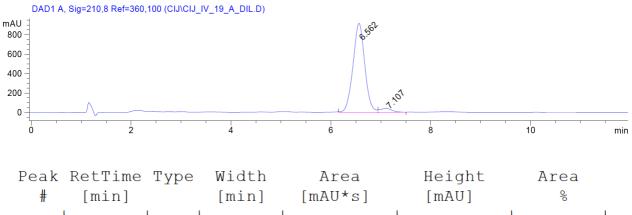
Racemic 5ka



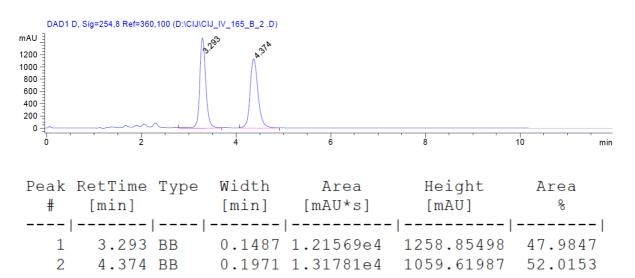
Enantioenriched 5ka



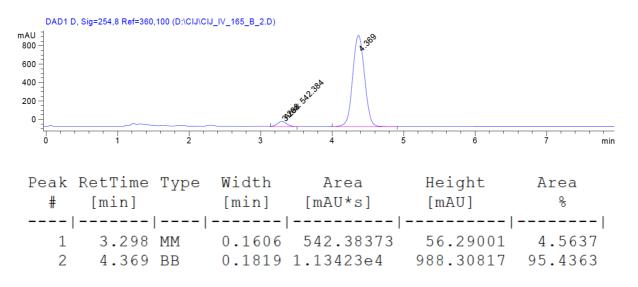
Enantioenriched 5la

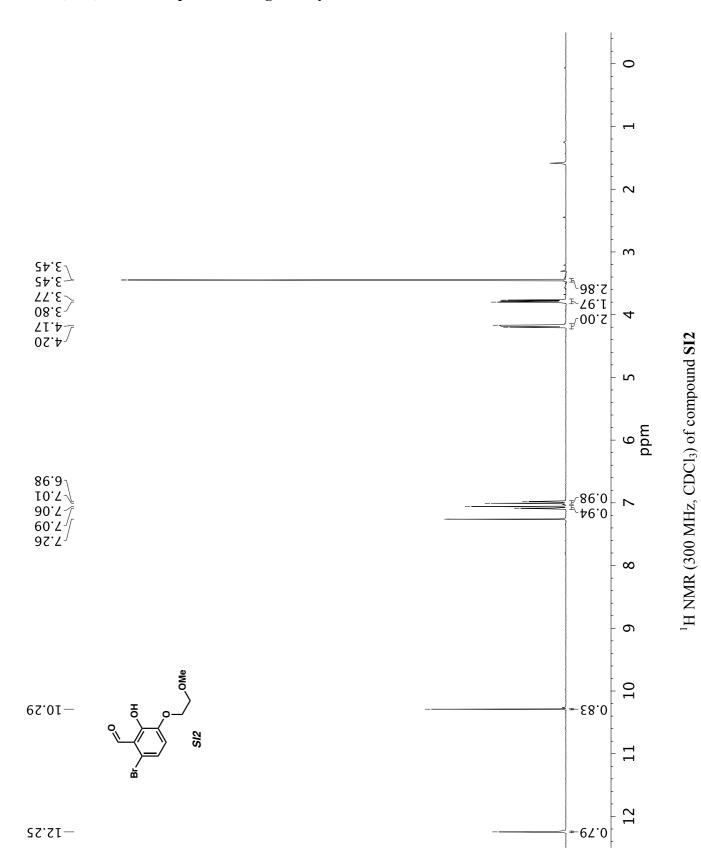


Racemic 5ma

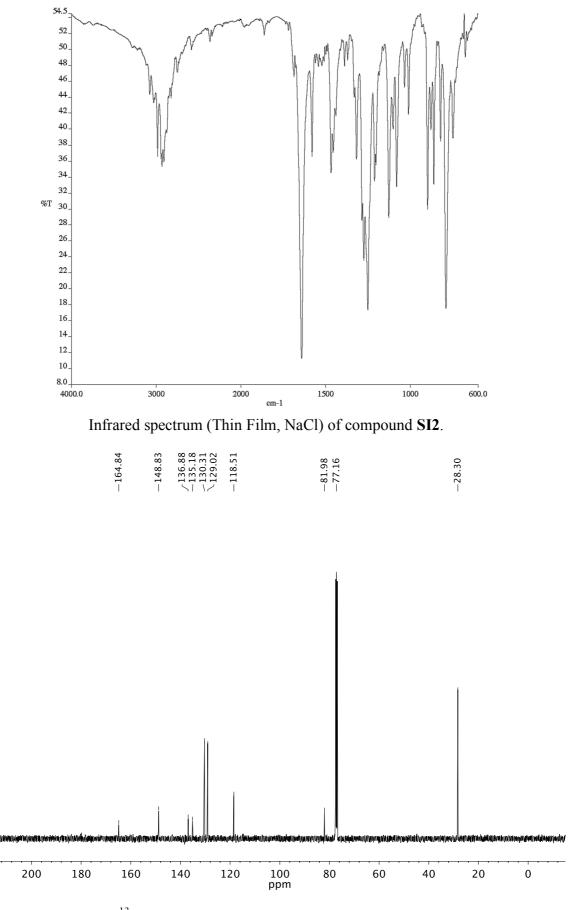

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	6.527	BV	0.2267	6022.24268	402.25772	49.7994
2	7.047	VB	0.2426	6070.75537	371.66992	50.2006

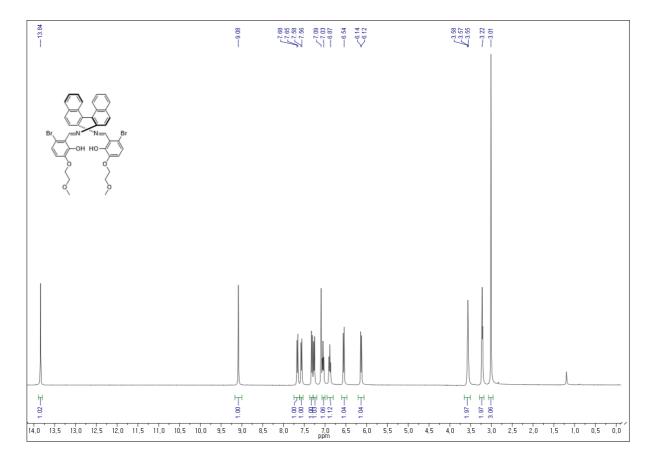
Enantioenriched 5ma

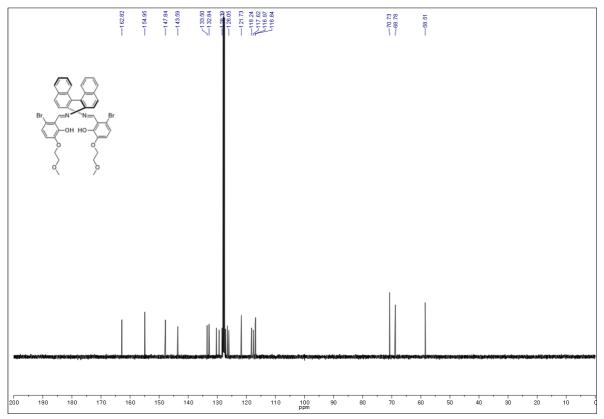


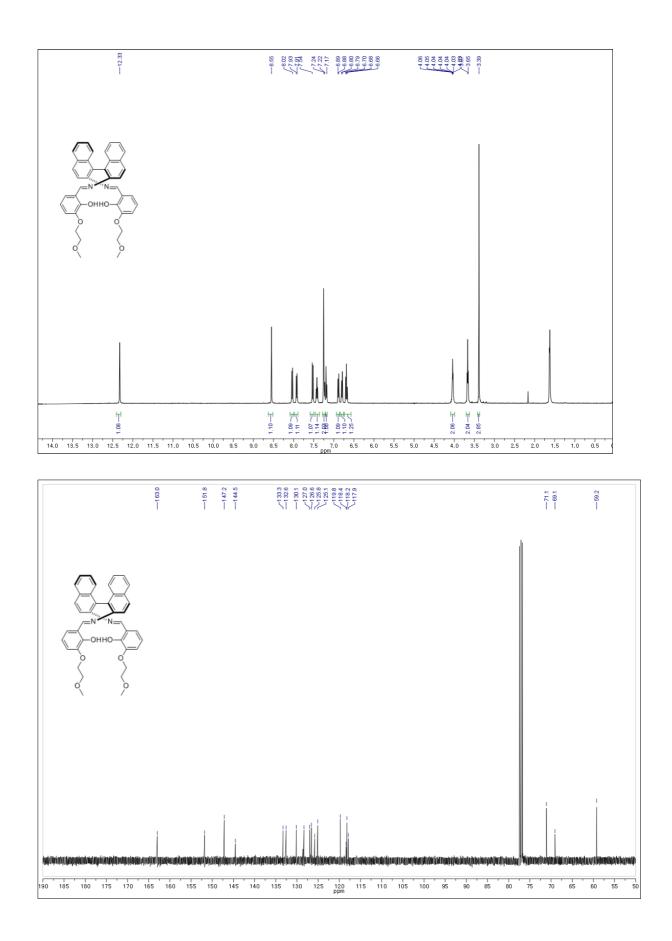

1	6.562	BV	0.2463	1.49132e4	914.24634	96.2033
2	7.107	VB	0.2379	588.55762	37.34389	3.7967

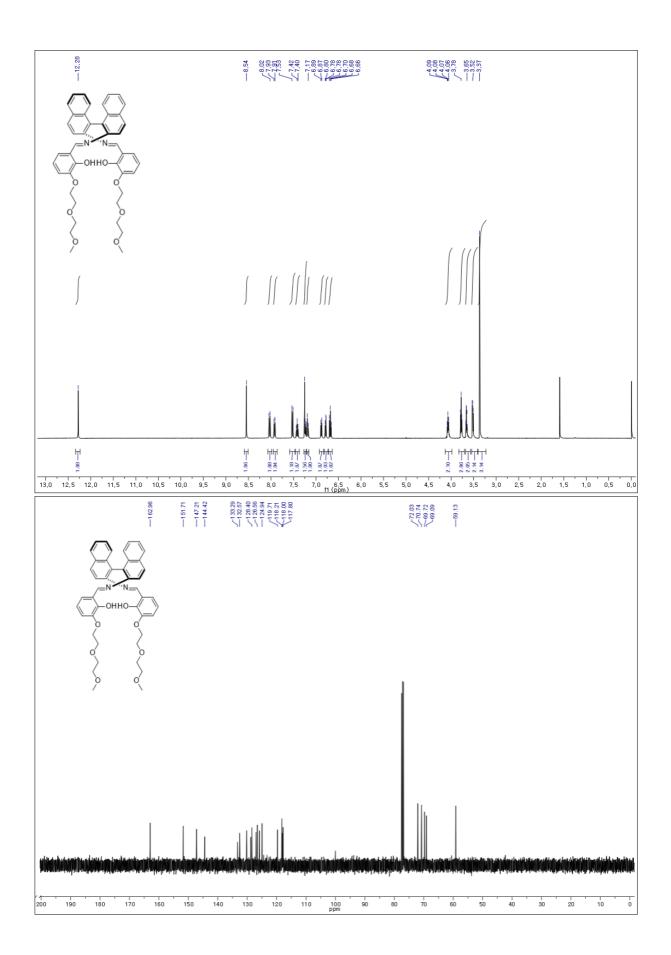
Racemic 5na

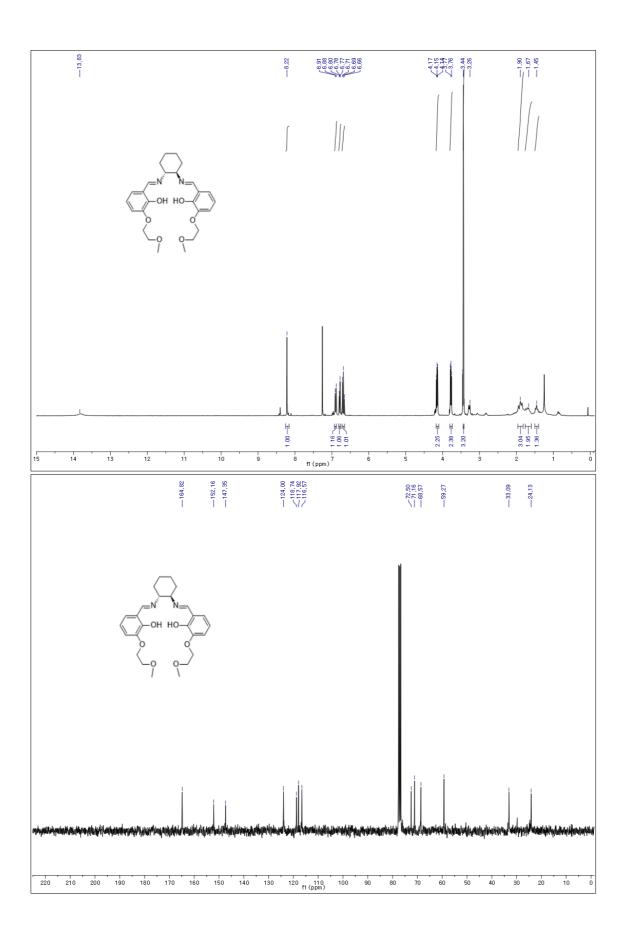

Enantioenriched 5na

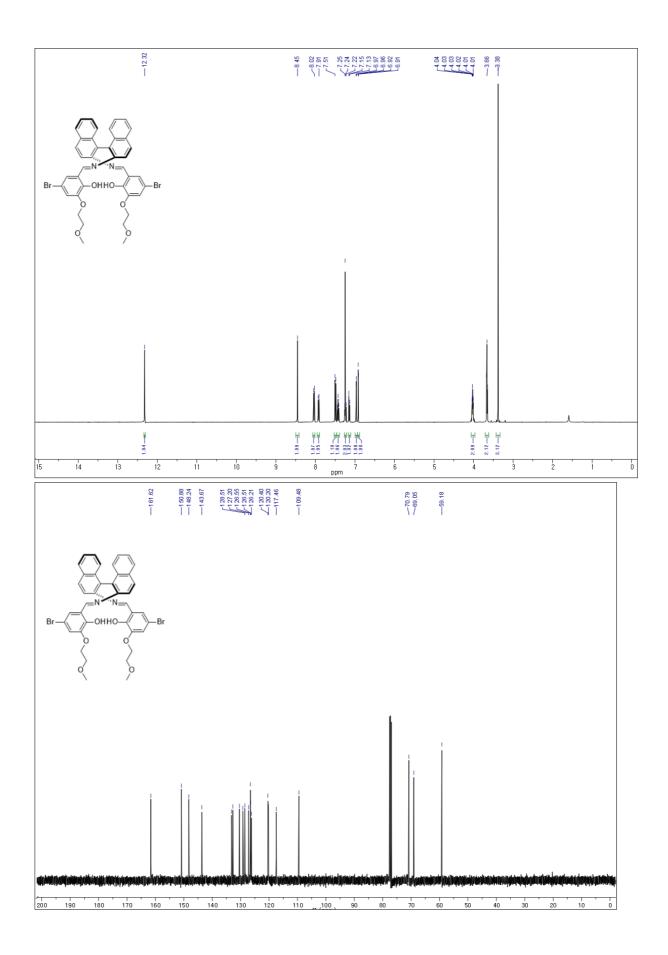


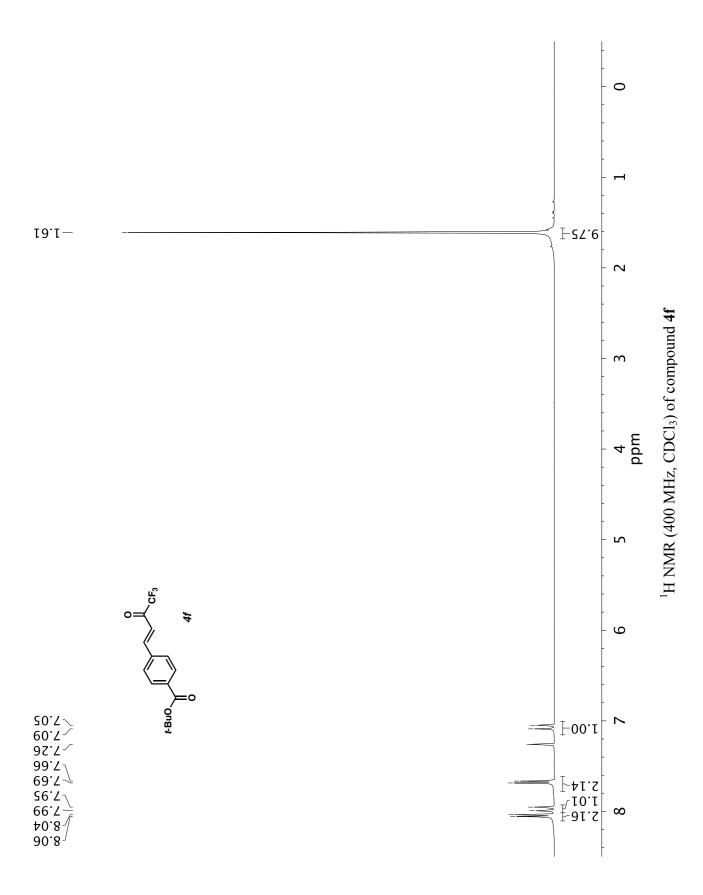

¹H, ¹³C, ¹⁹F NMR Spectra for Ligands Synthesized:

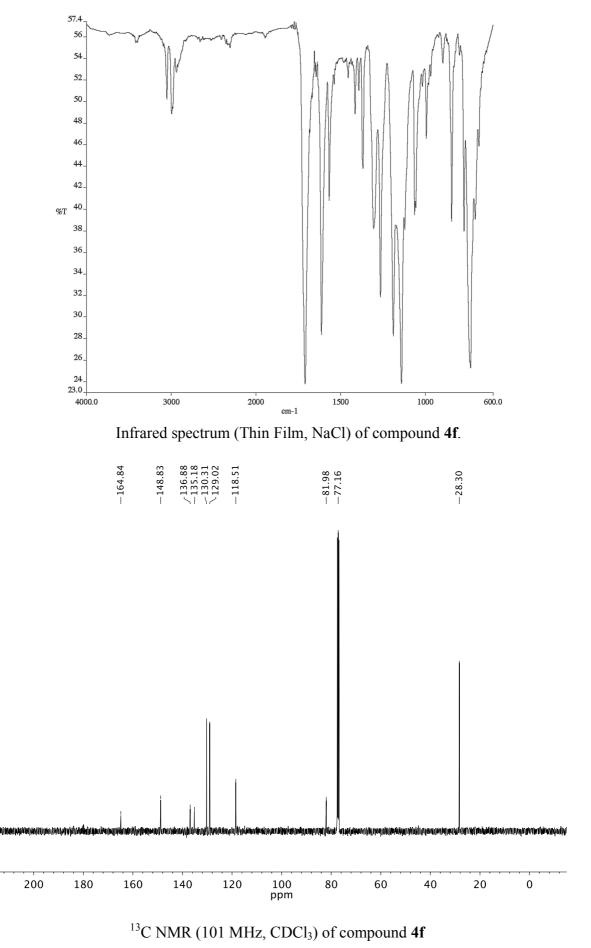

S58

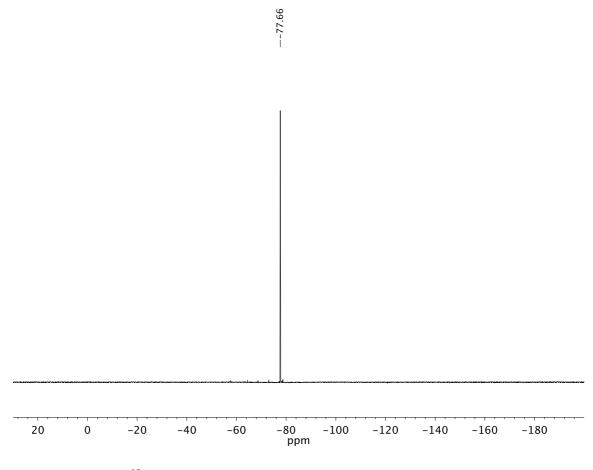


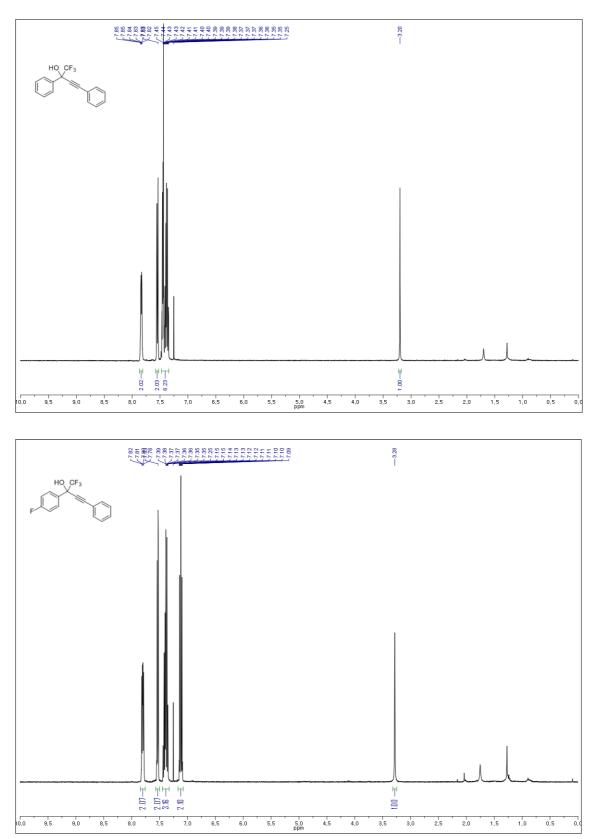


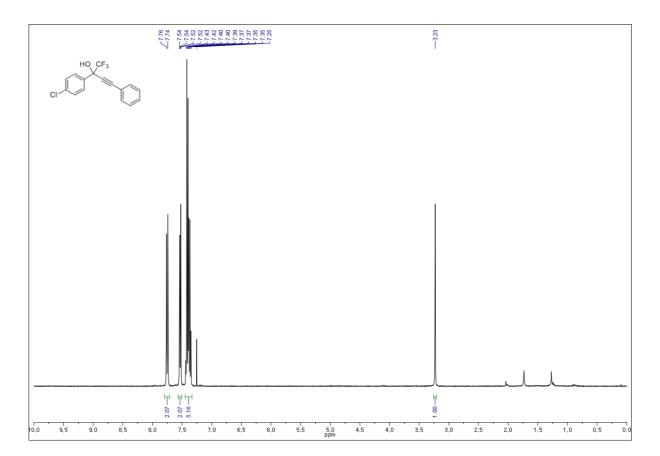


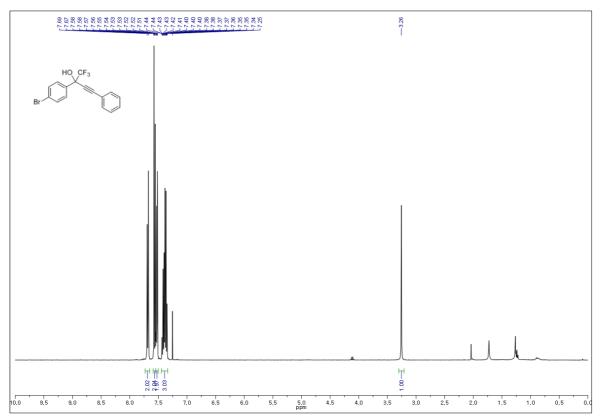


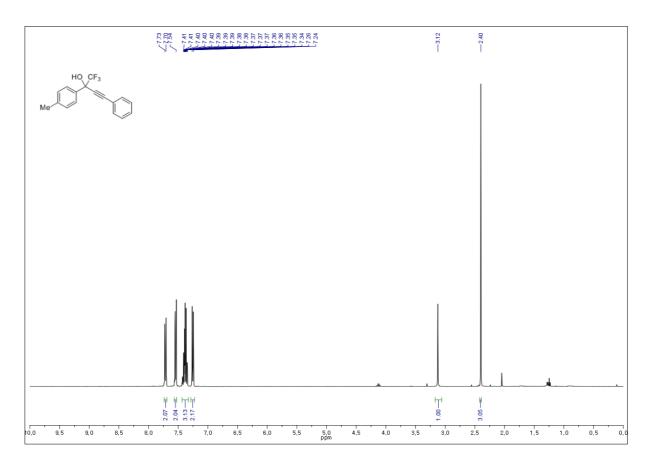


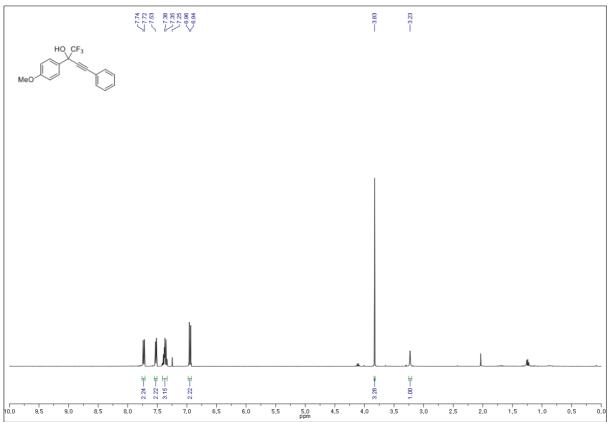


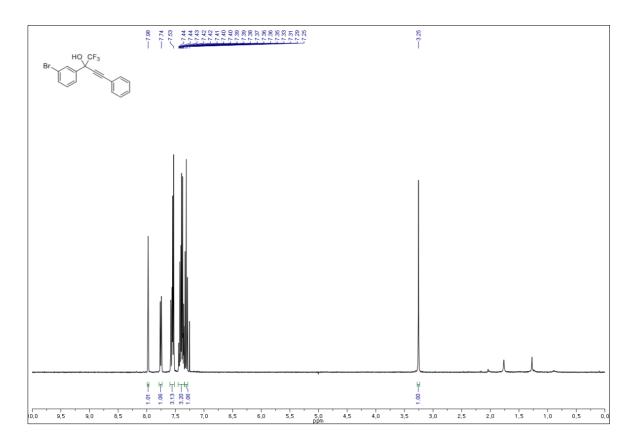


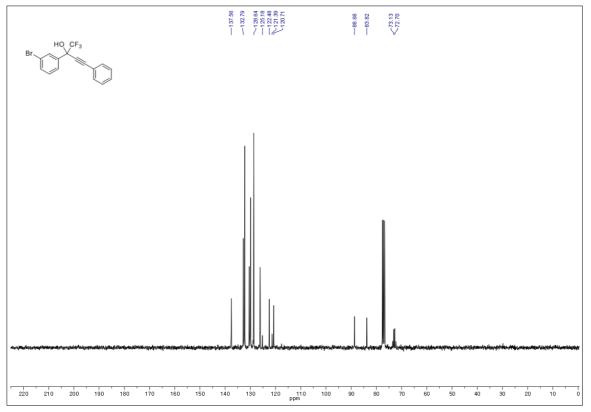


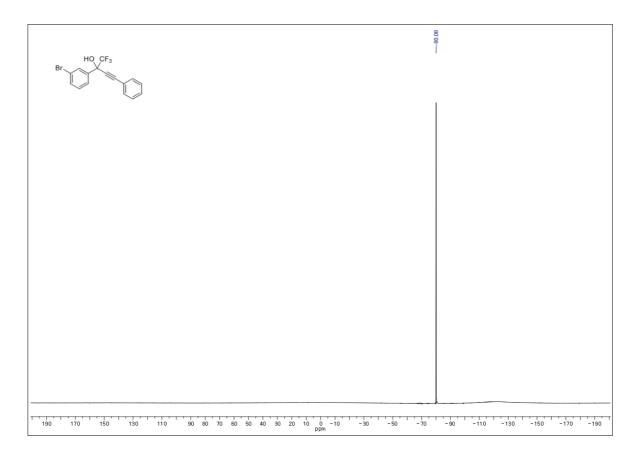


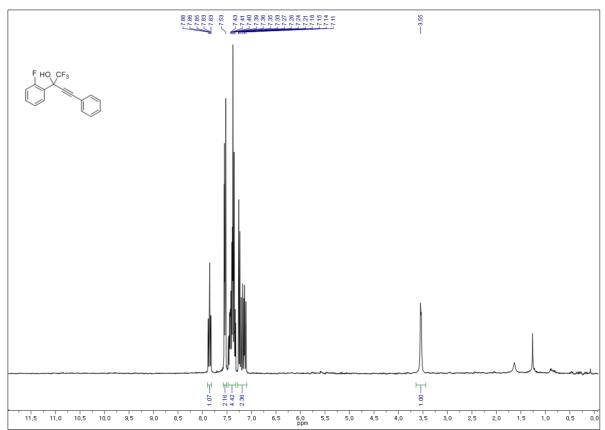

¹⁹F NMR (282 MHz, CDCl₃) of compound 4f

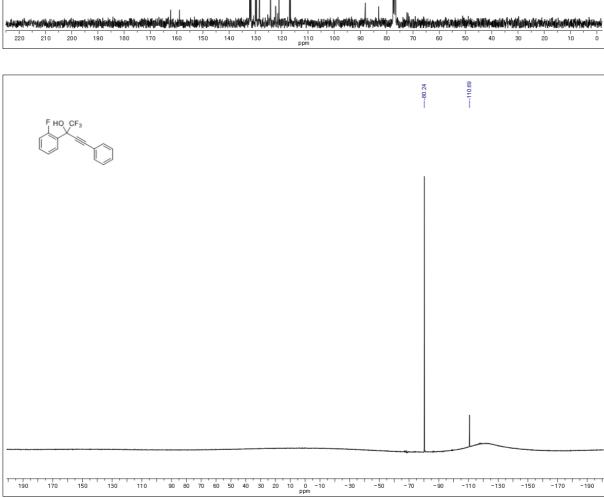


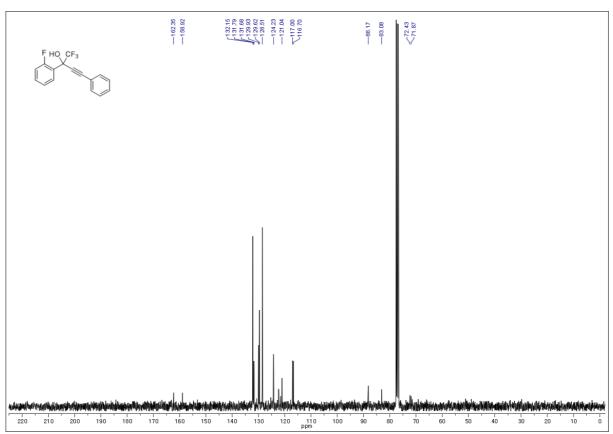

NMR and IR Data for Trifluoromethyl Products

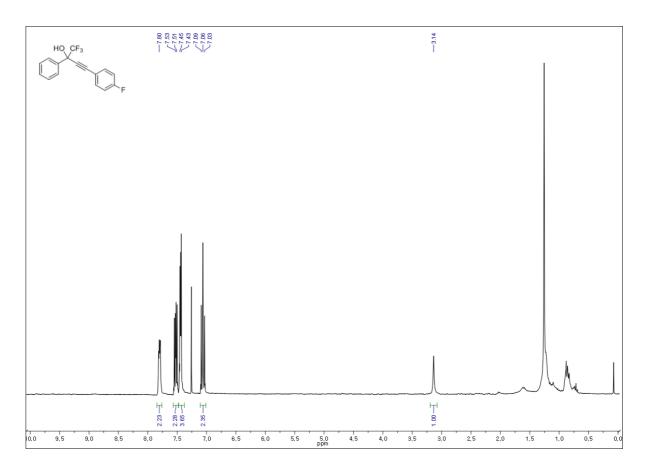


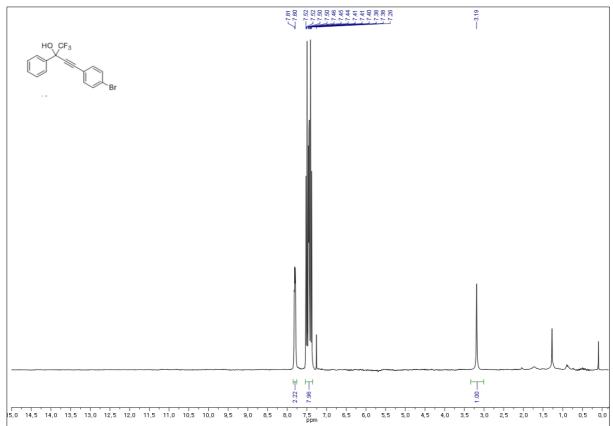


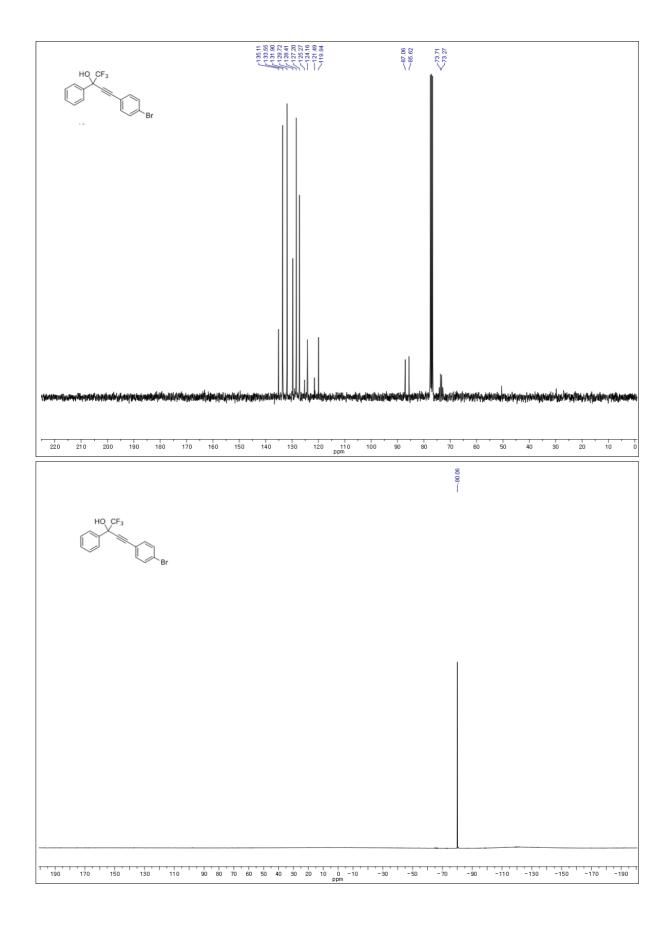


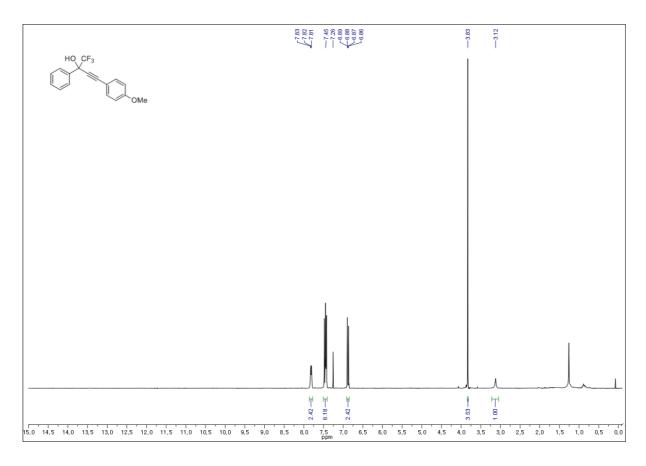


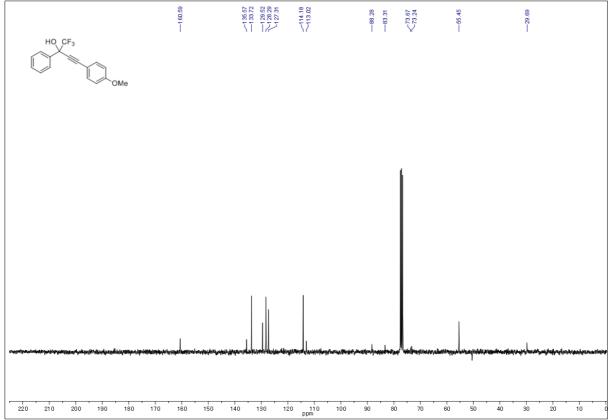


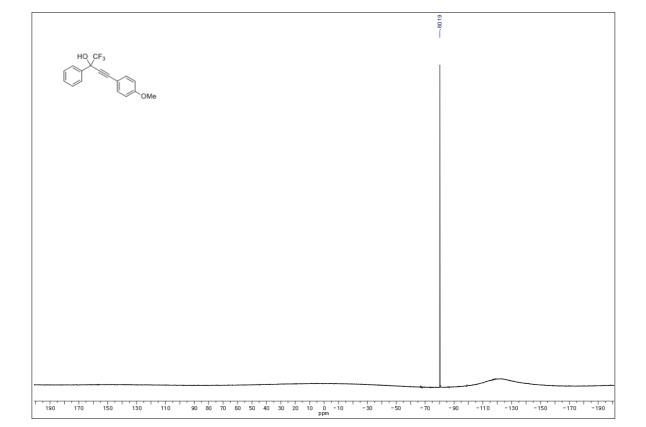


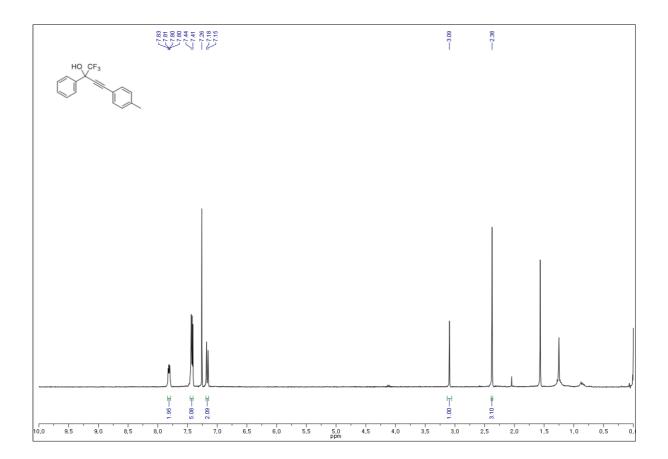


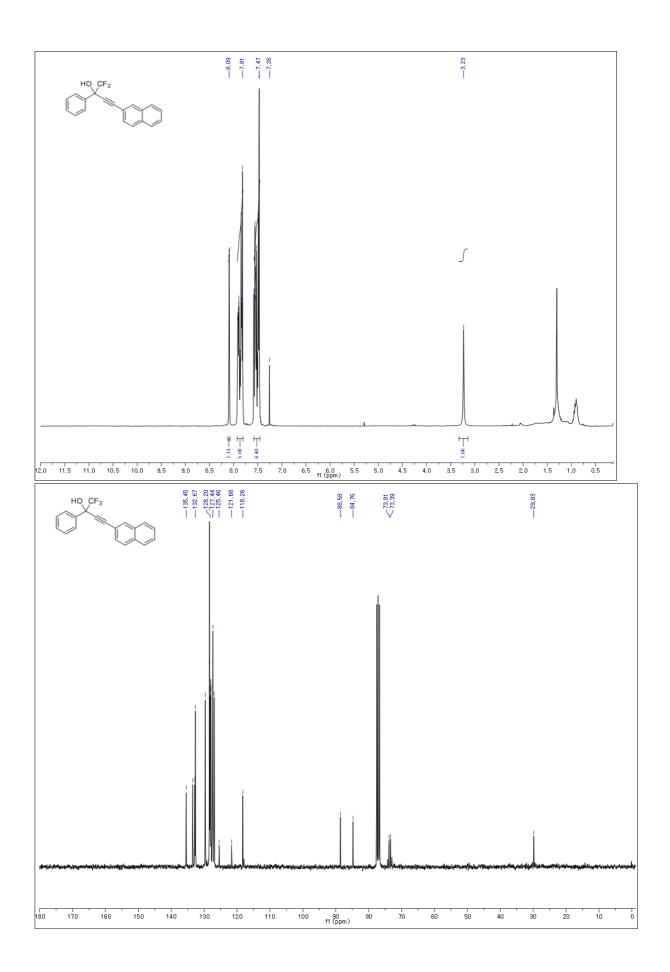


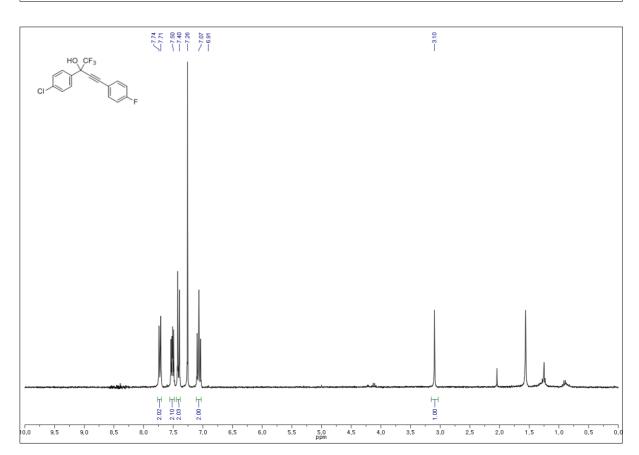


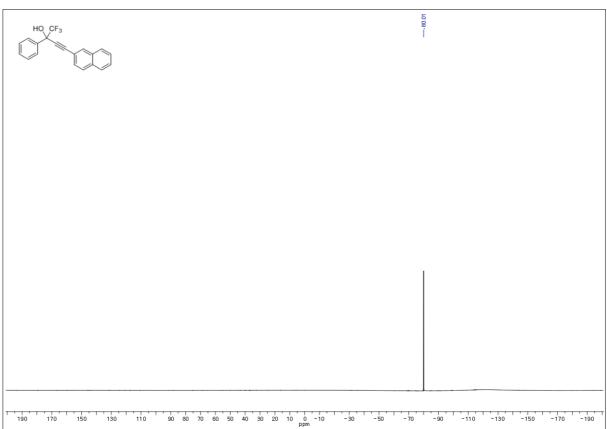


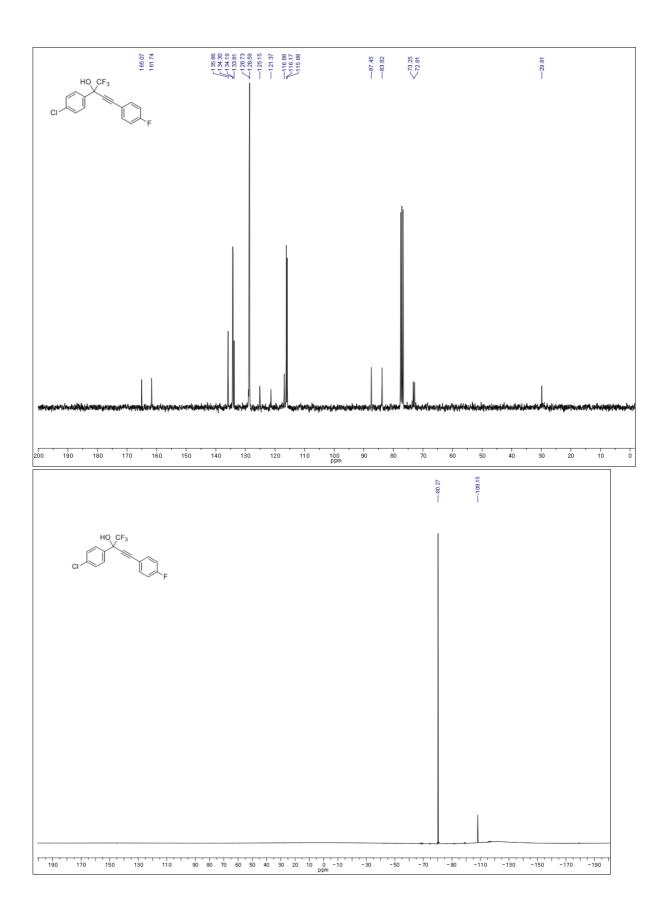


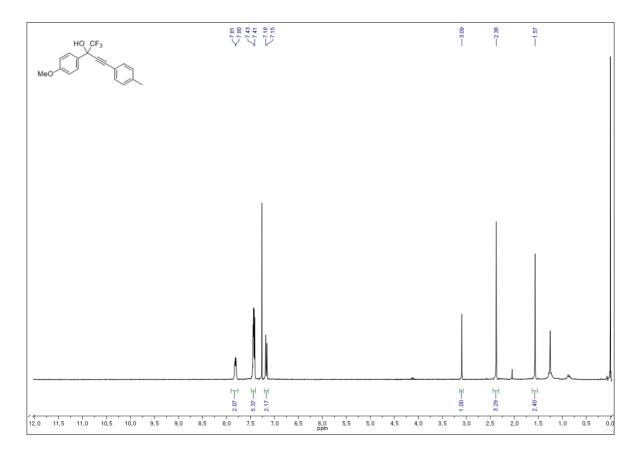


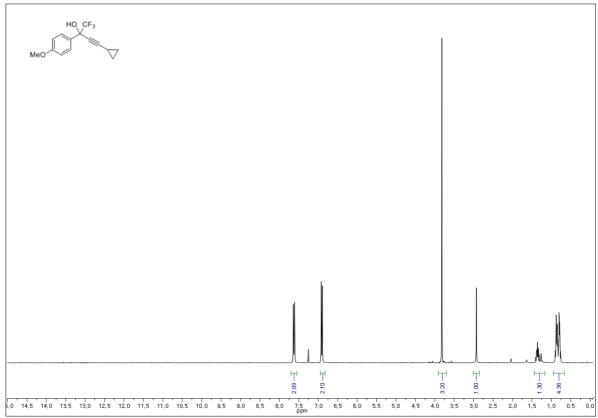


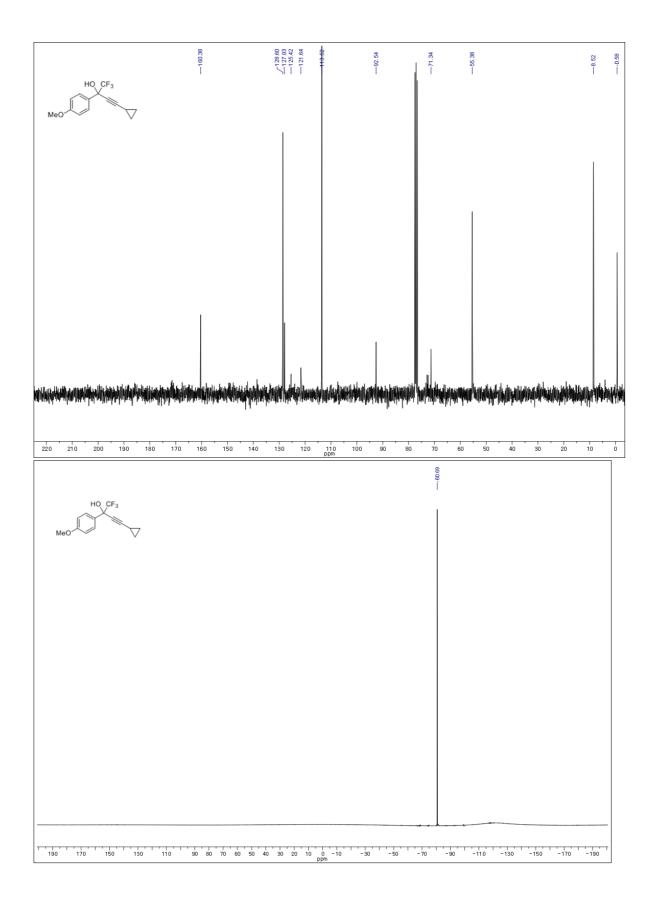


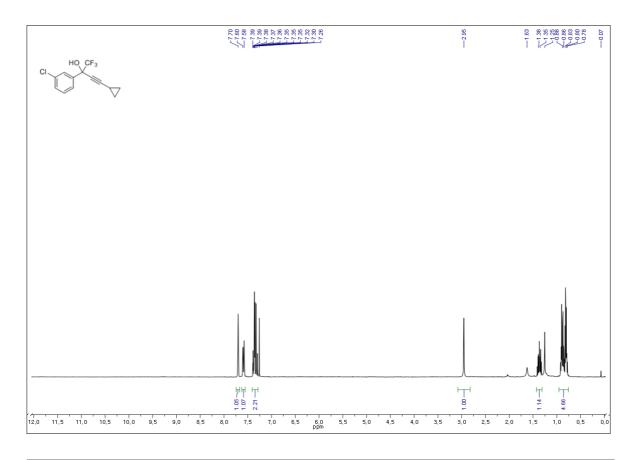


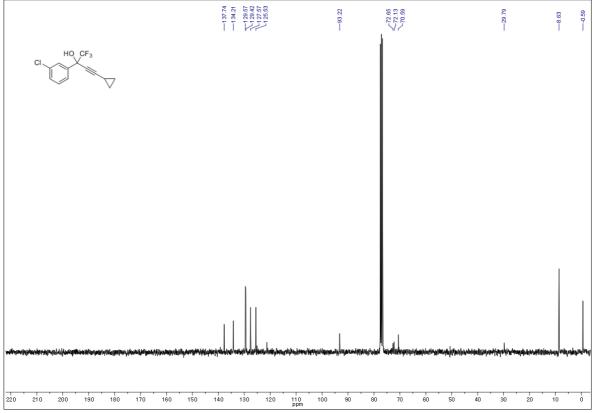


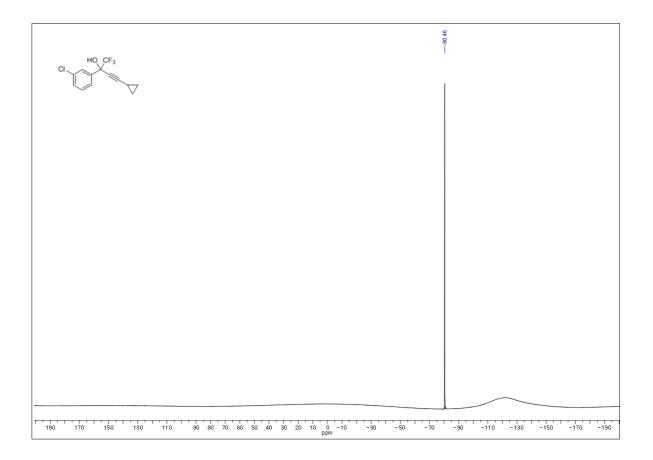


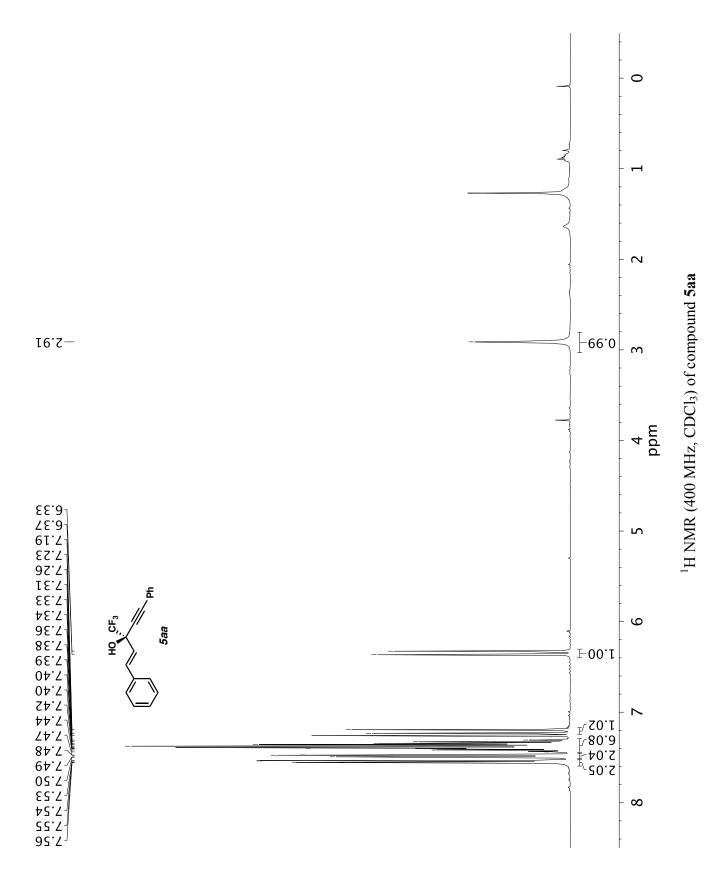


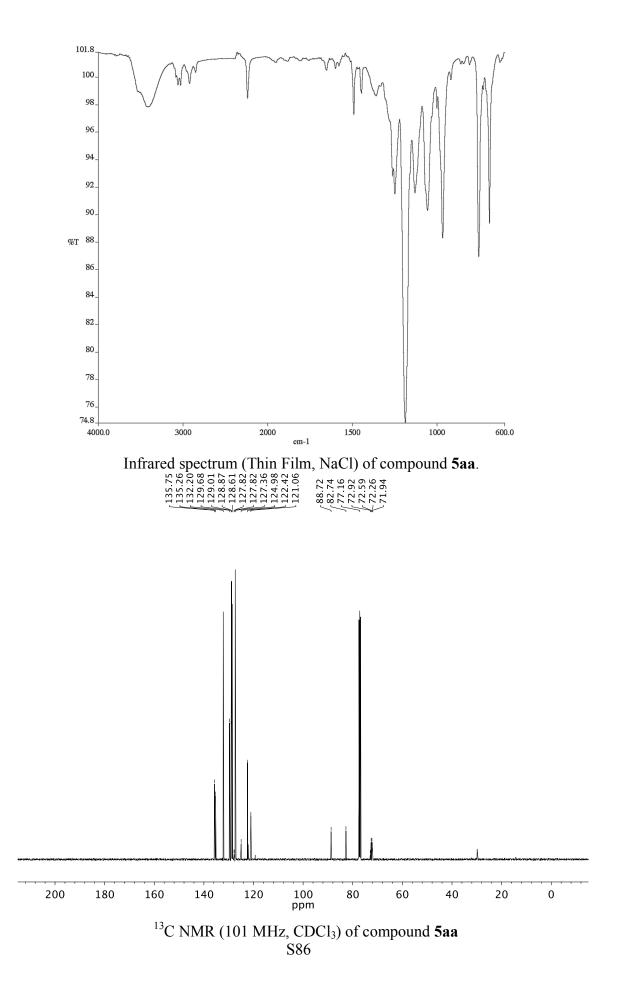


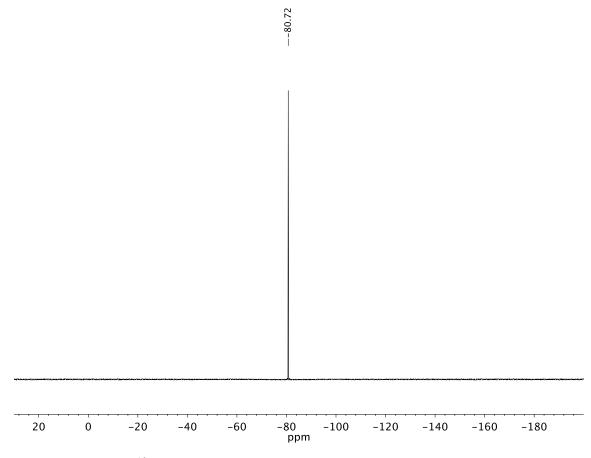


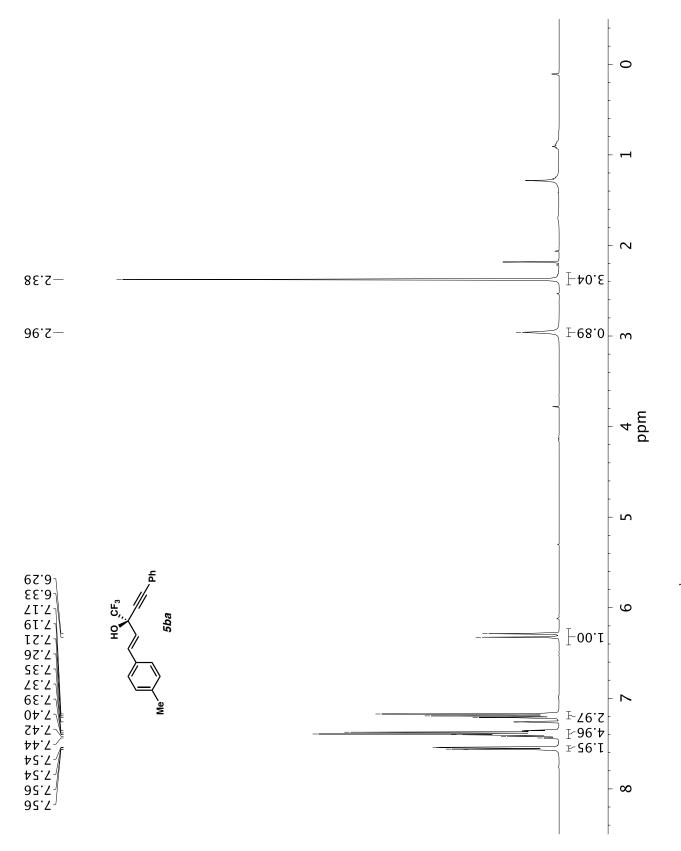




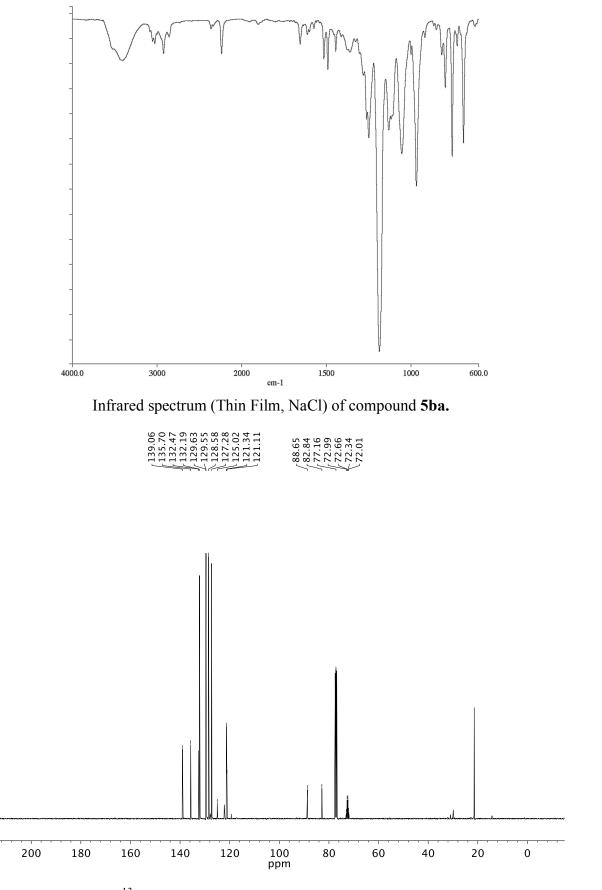


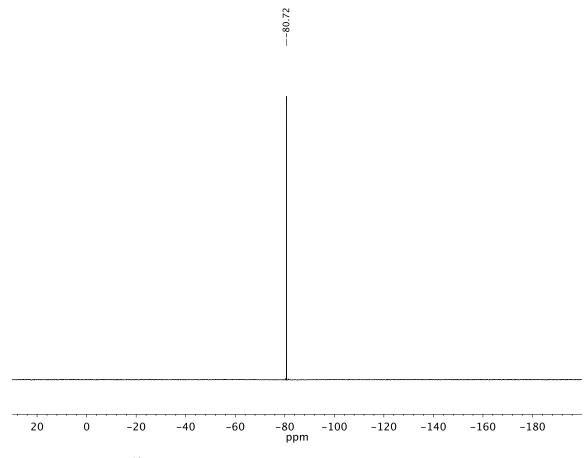


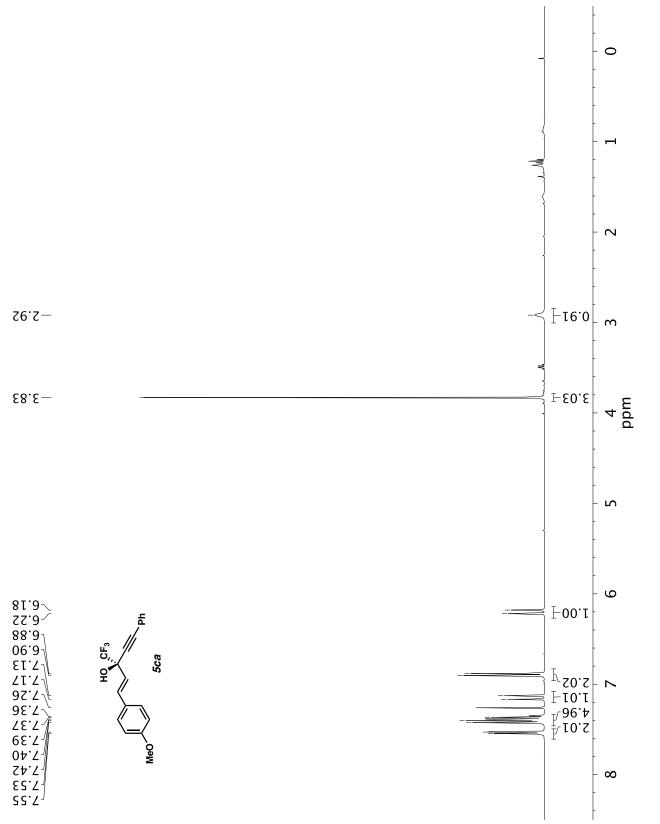


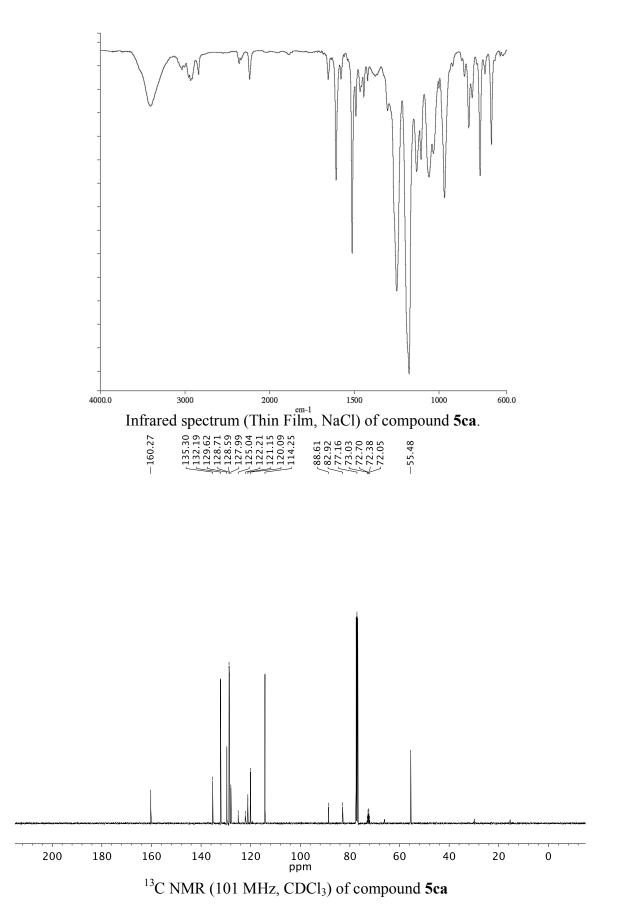


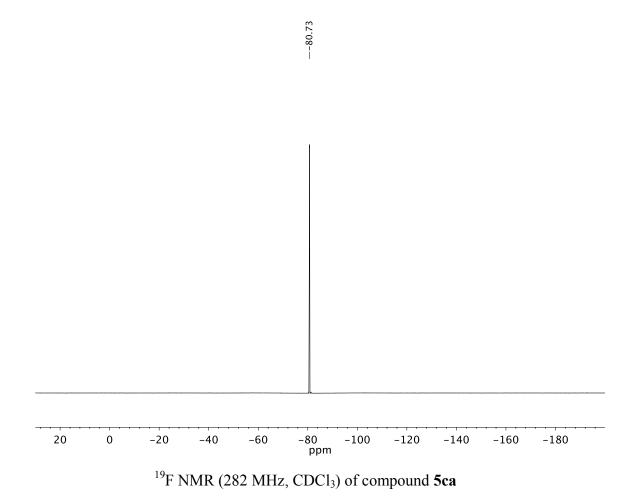
S85

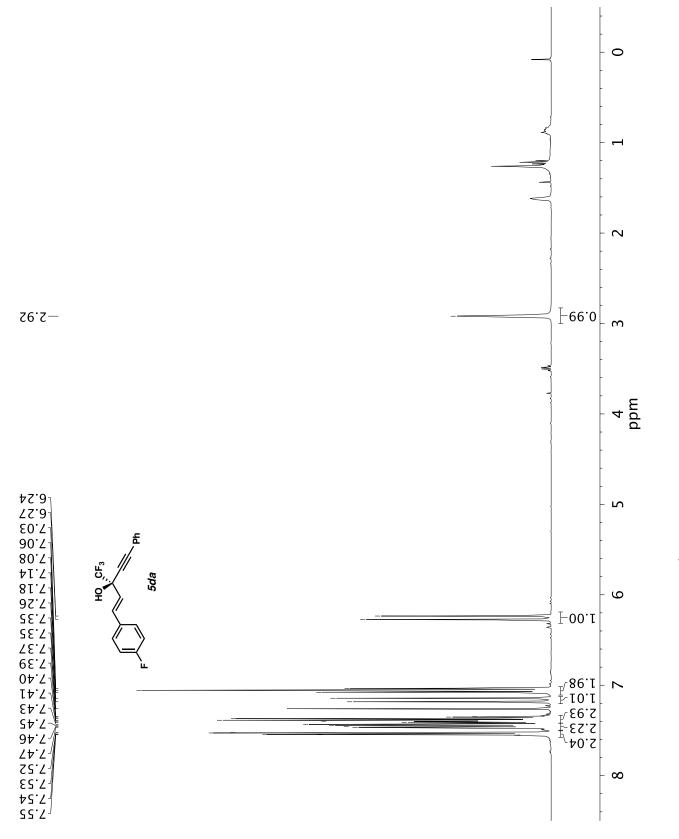


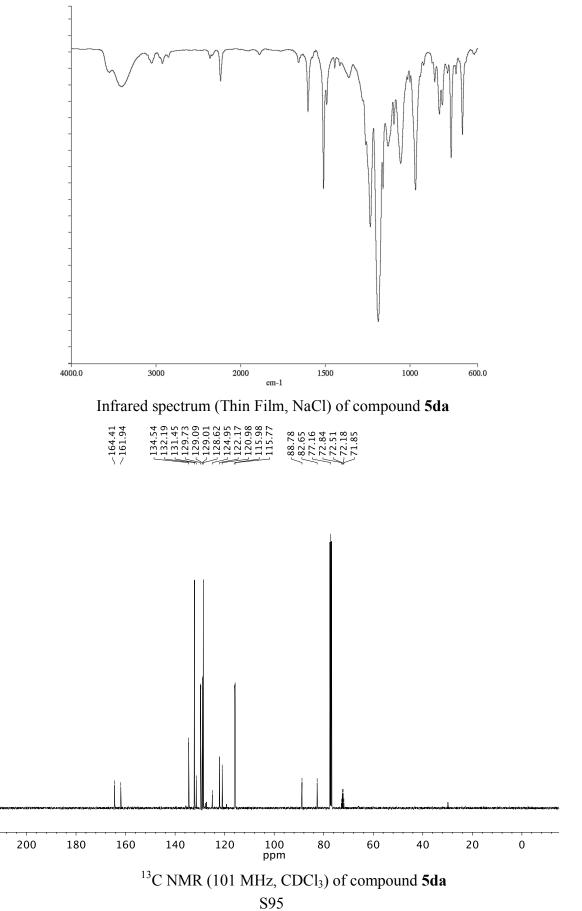

¹⁹F NMR (282 MHz, CDCl₃) of compound **5aa**

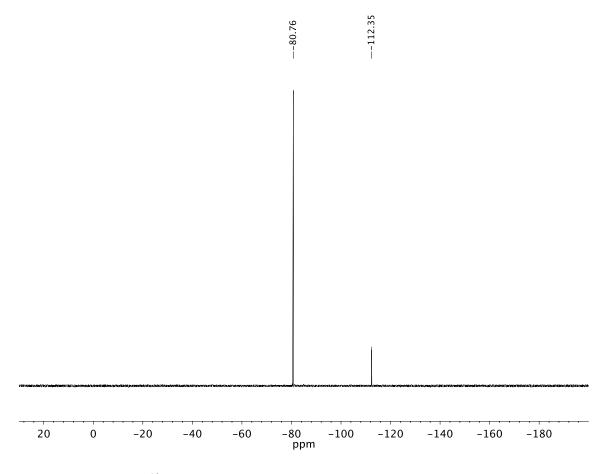

¹H NMR (400 MHz, CDCl₃) of compound **5ba**

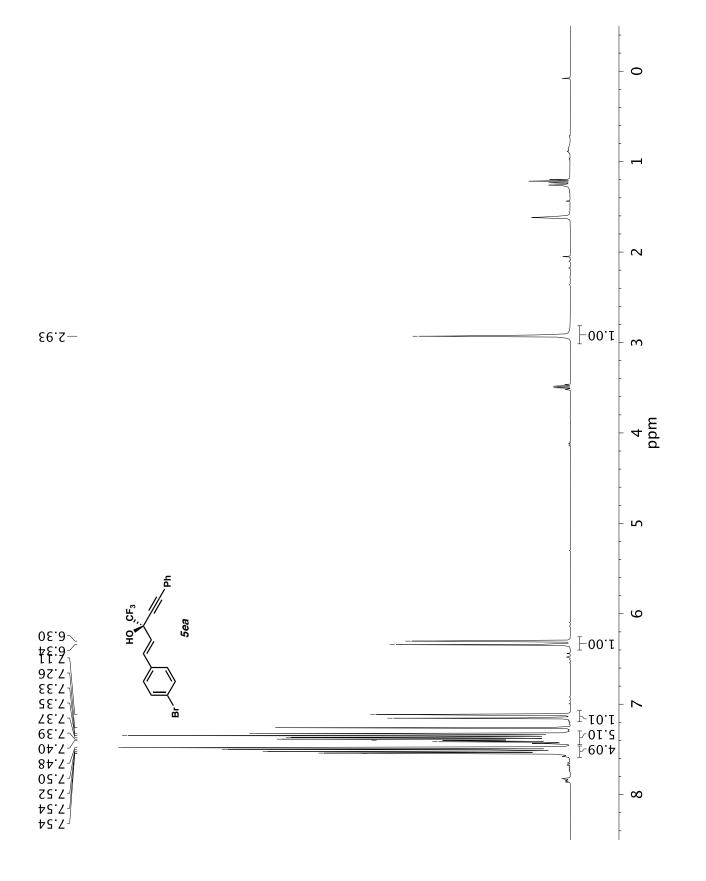


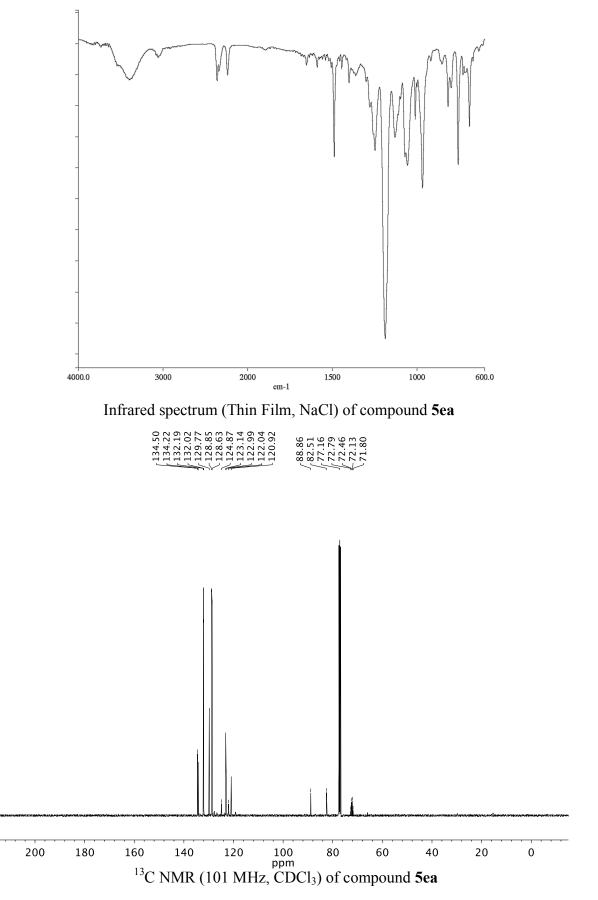


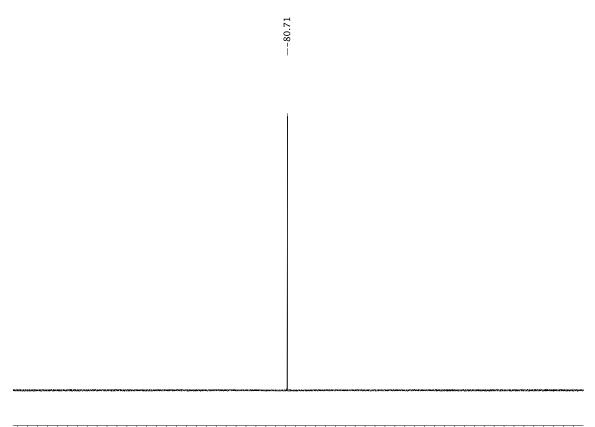

¹⁹F NMR (282 MHz, CDCl₃) of compound **5ba**

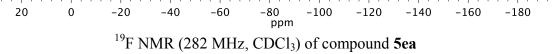

¹H NMR (400 MHz, CDCl₃) of compound **5ca**

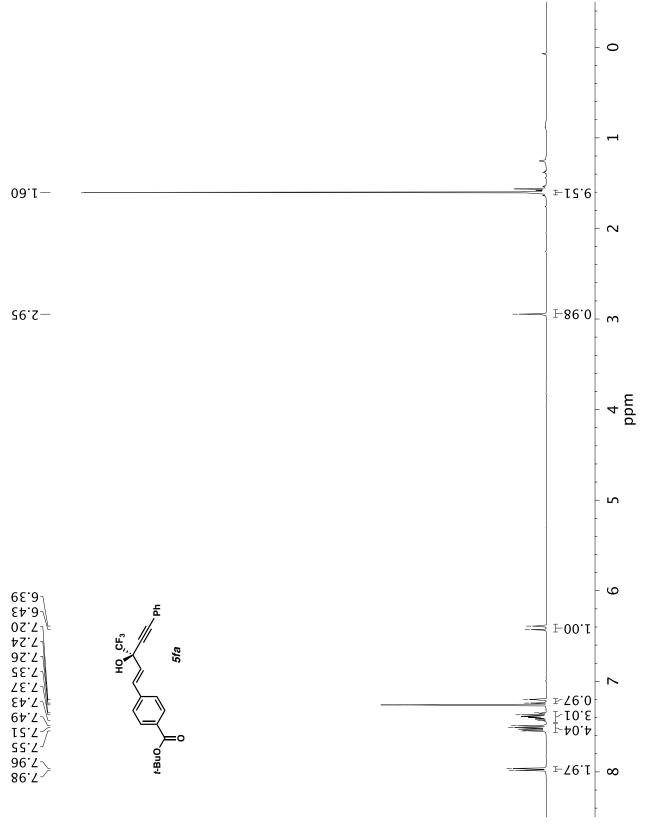


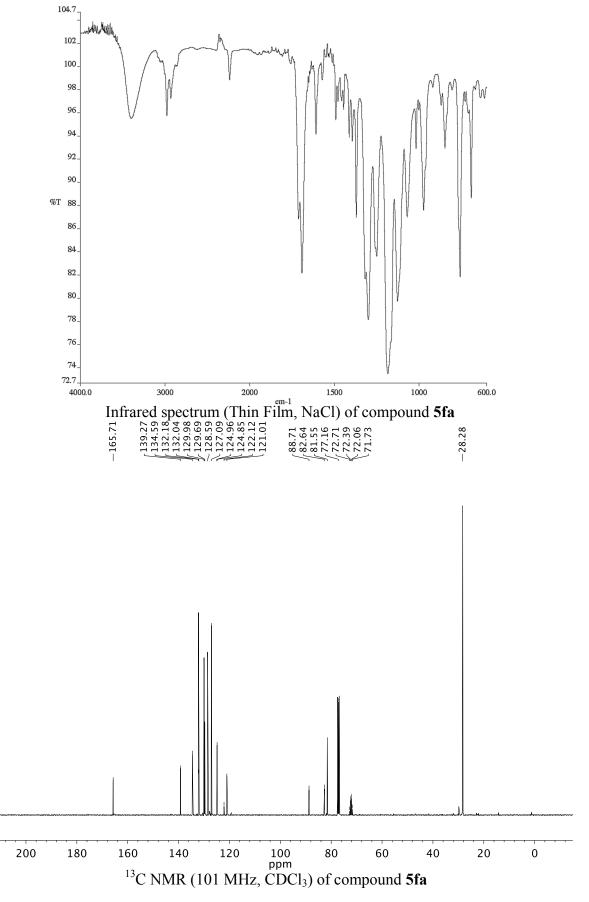


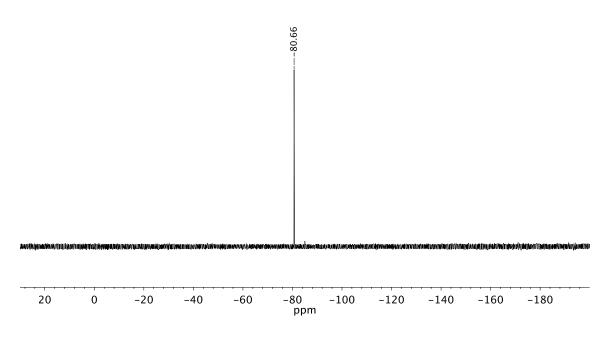


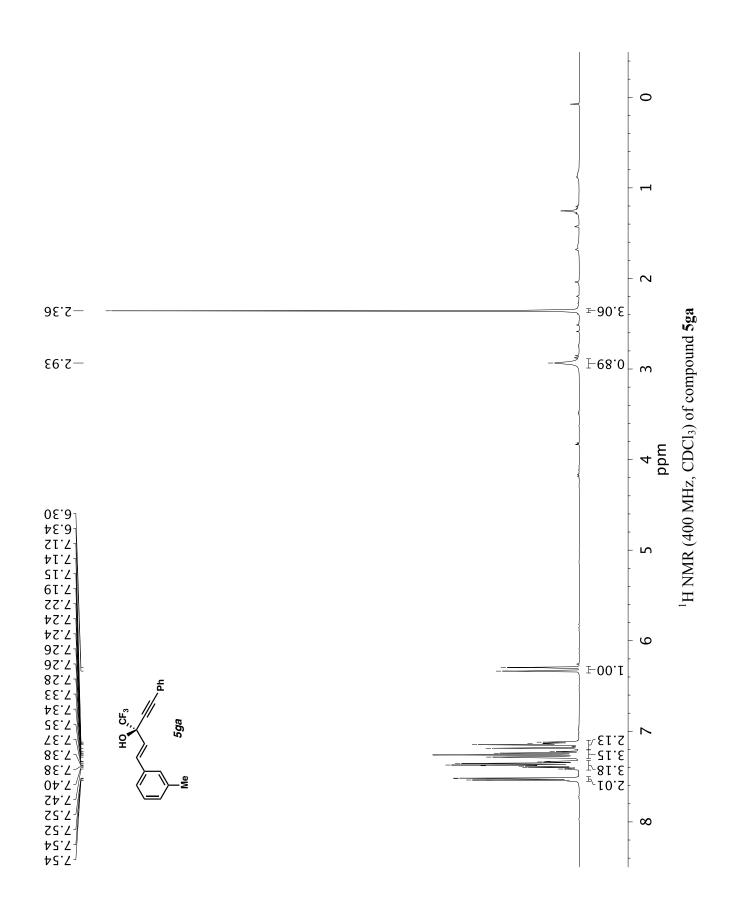


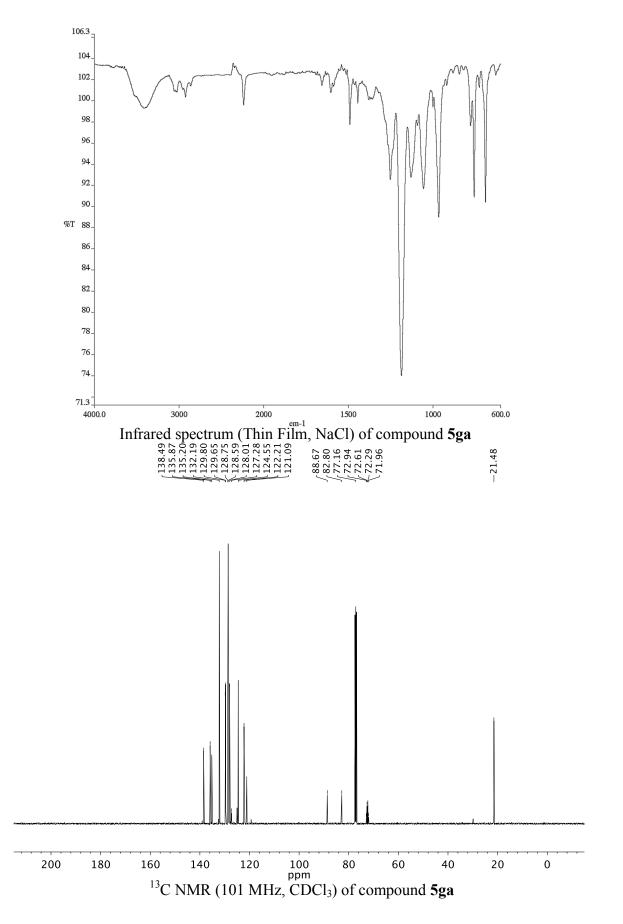

¹⁹F NMR (282 MHz, CDCl₃) of compound **5da**

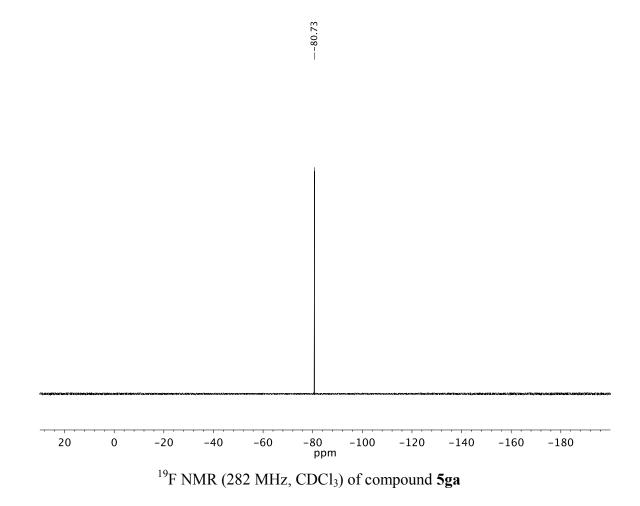


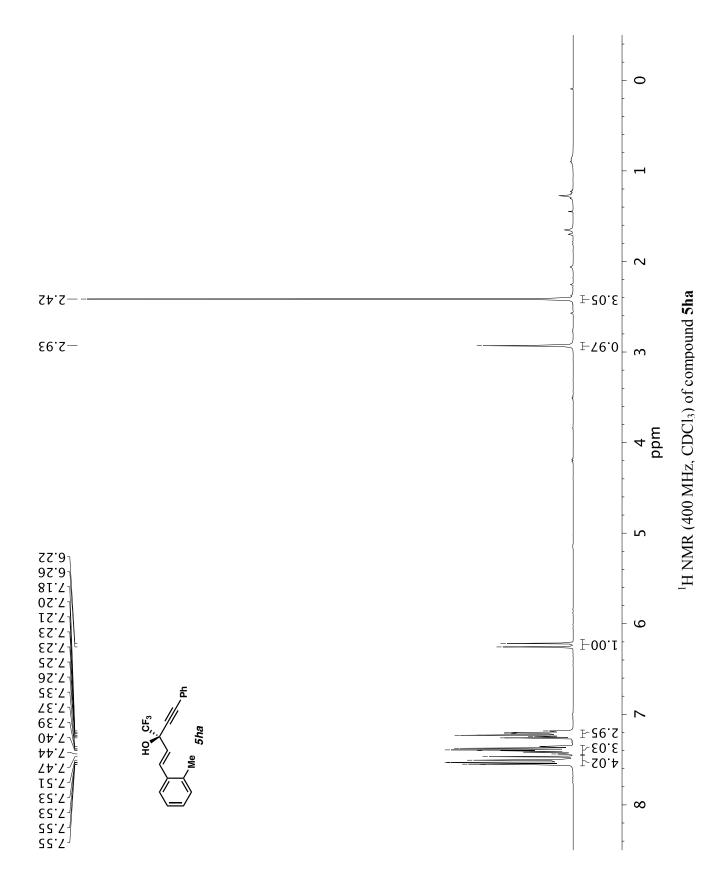


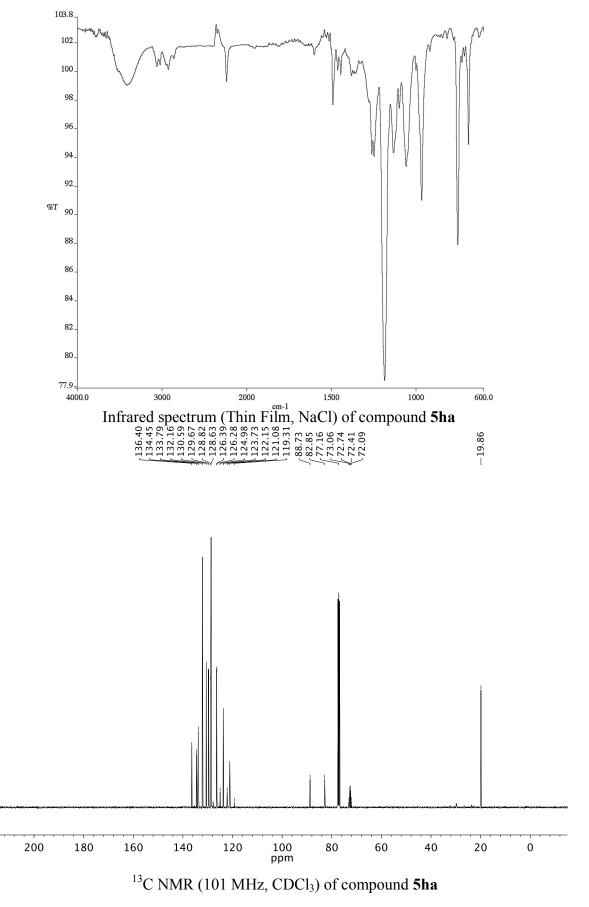


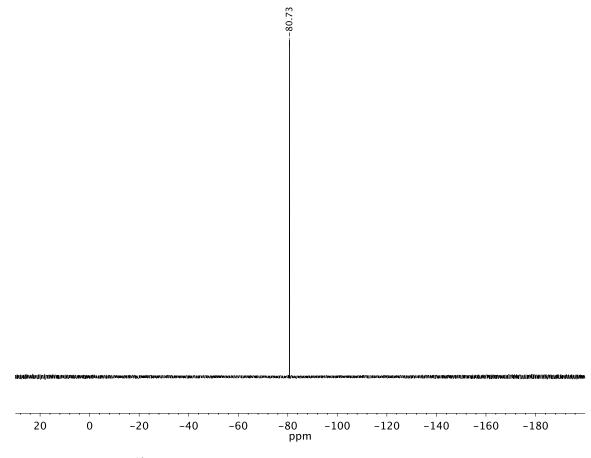


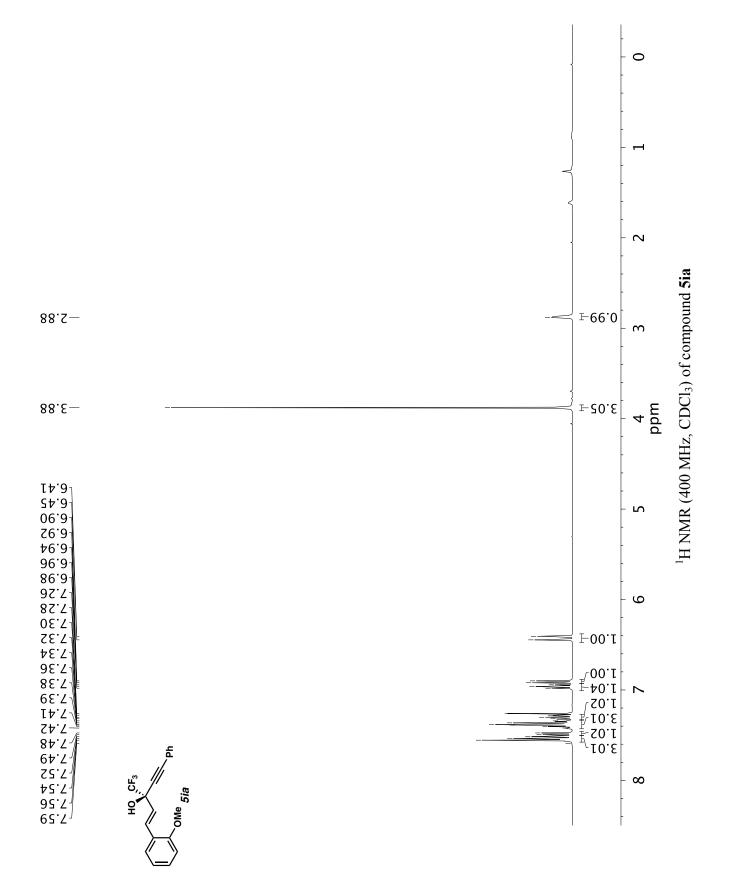


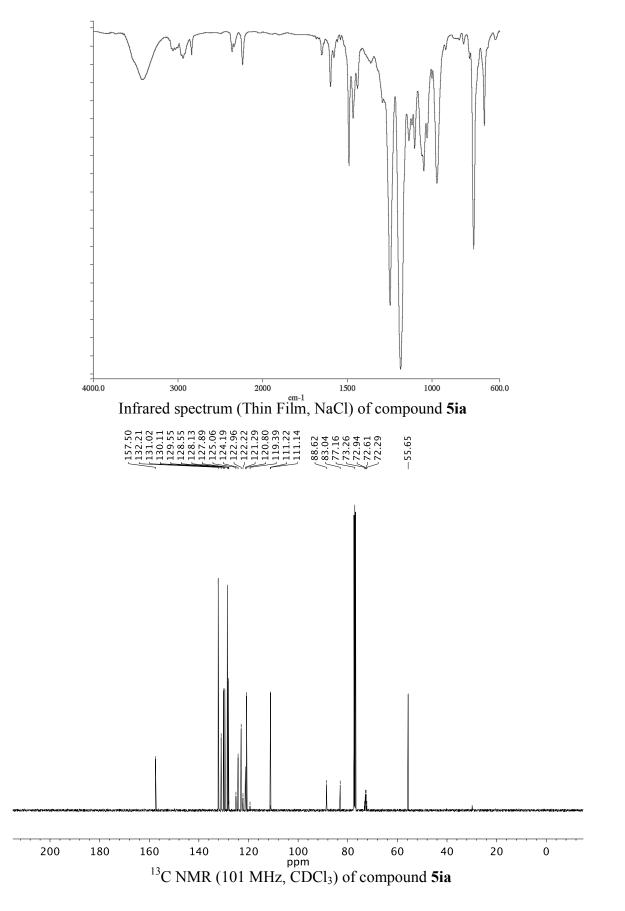


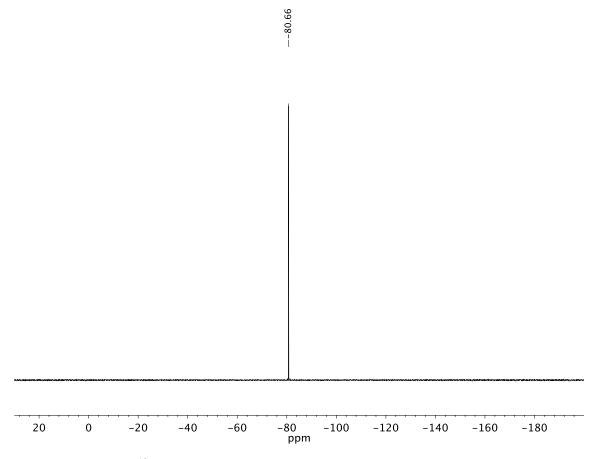


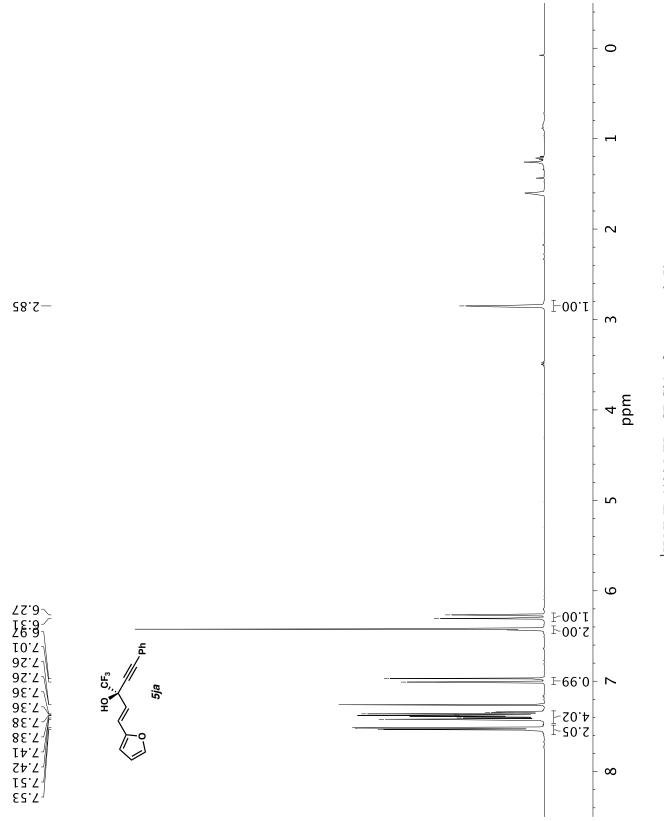

¹⁹F NMR (282 MHz, CDCl₃) of compound **5fa**

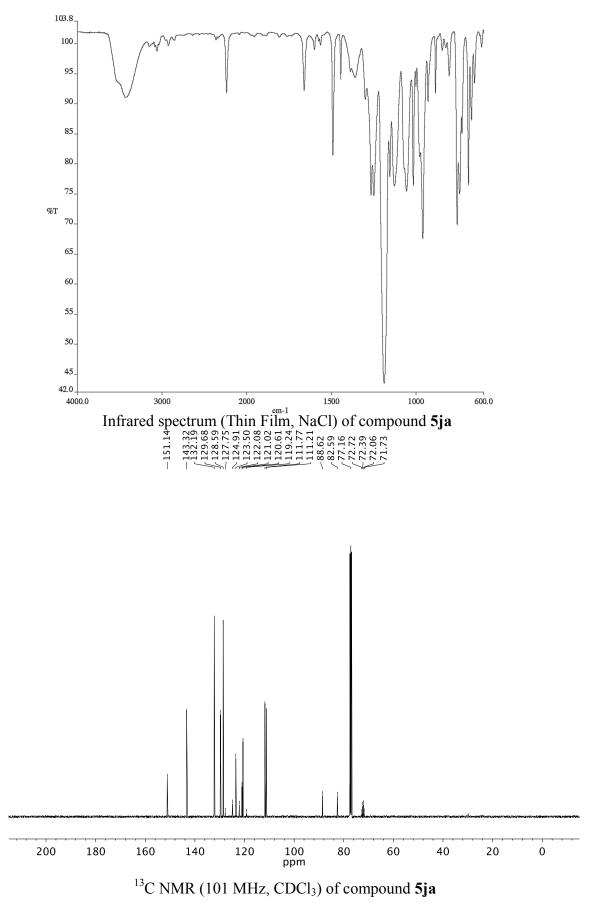


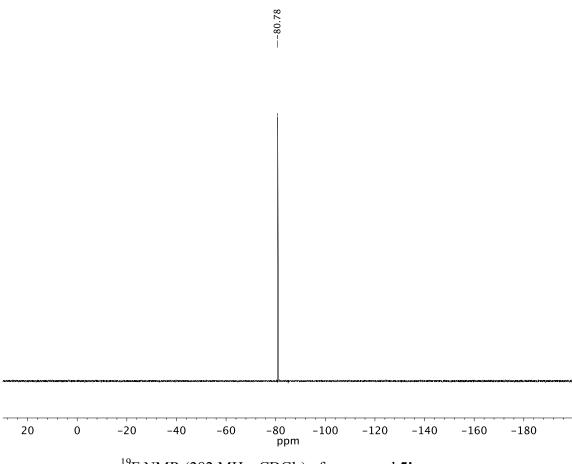


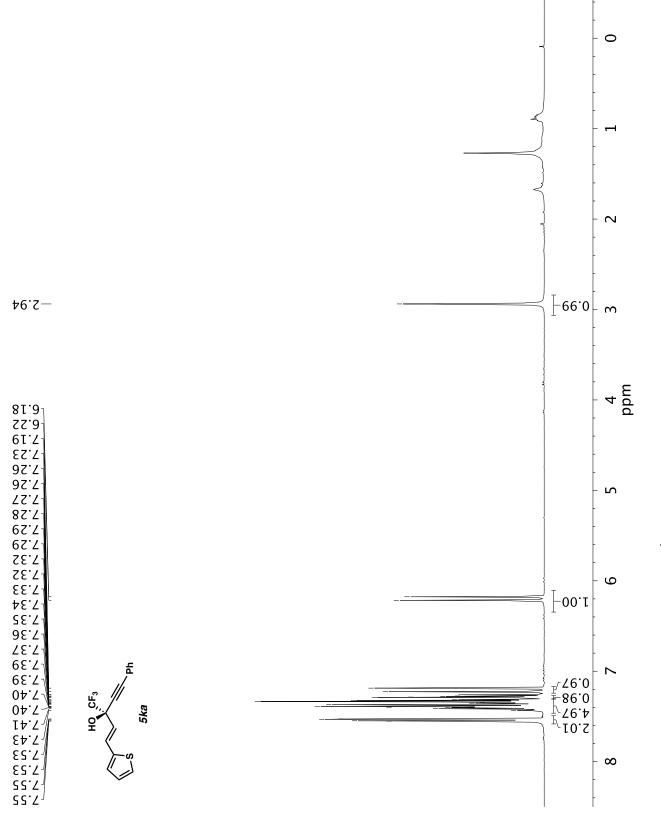


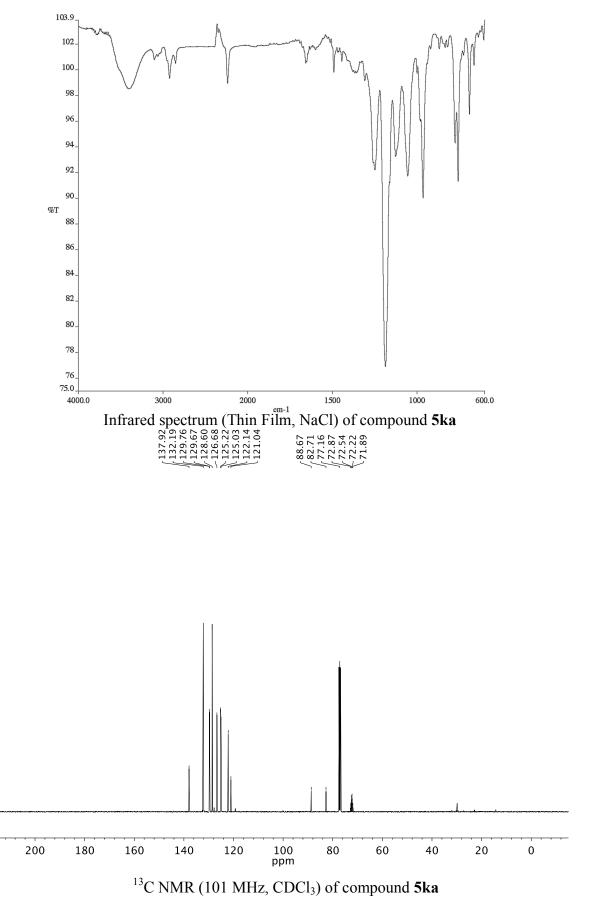



¹⁹F NMR (282 MHz, CDCl₃) of compound **5ha**

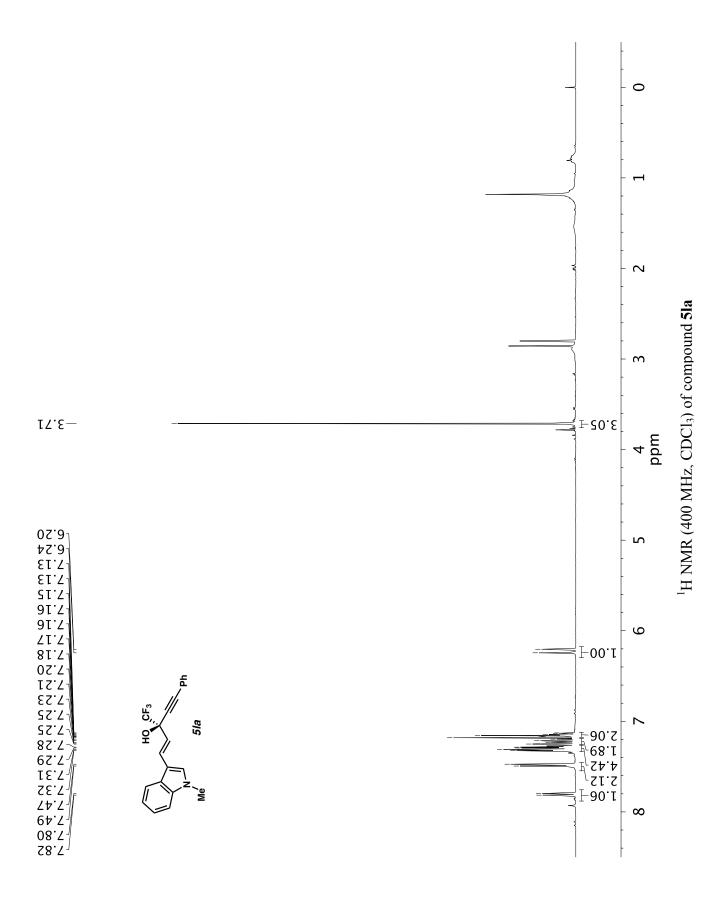


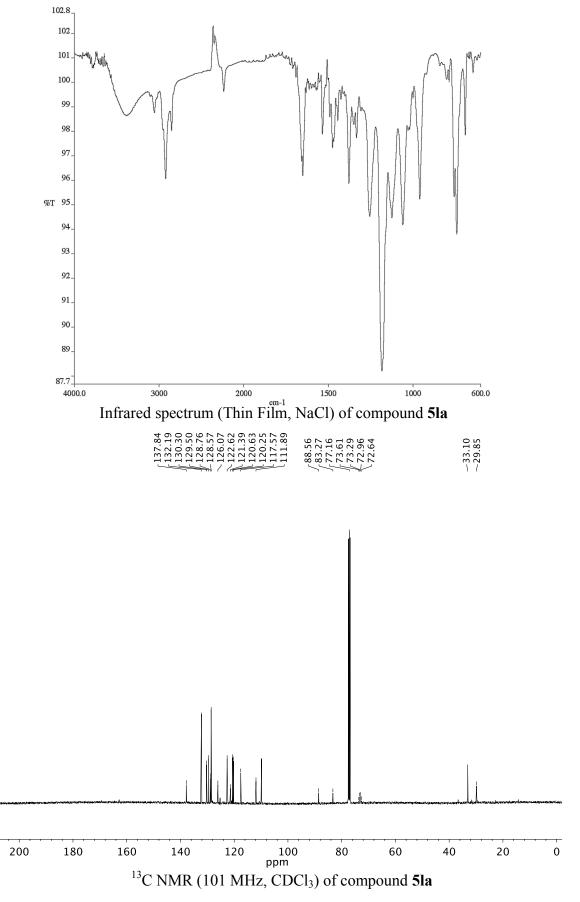

¹⁹F NMR (282 MHz, CDCl₃) of compound **5ia**

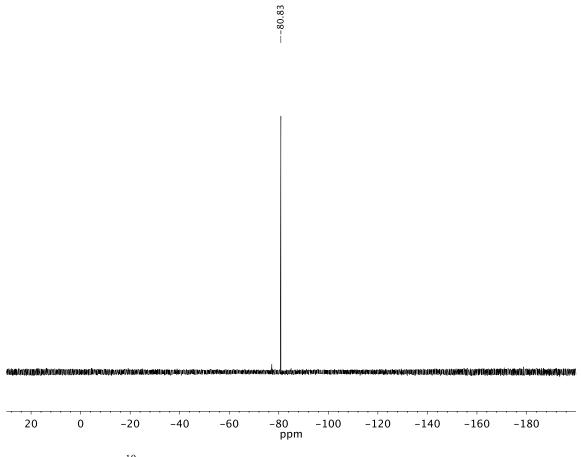

¹H NMR (400 MHz, CDCl₃) of compound **5ja**

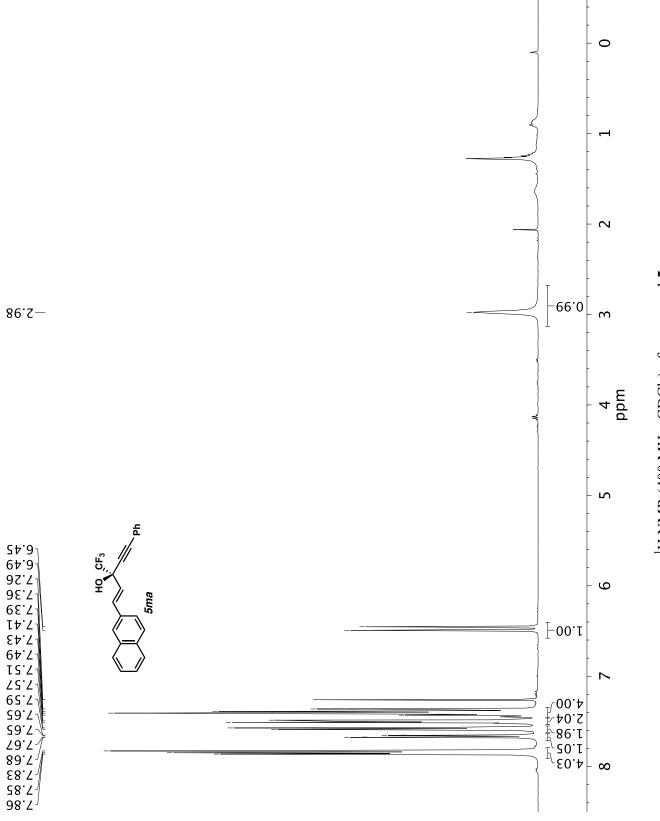

S113

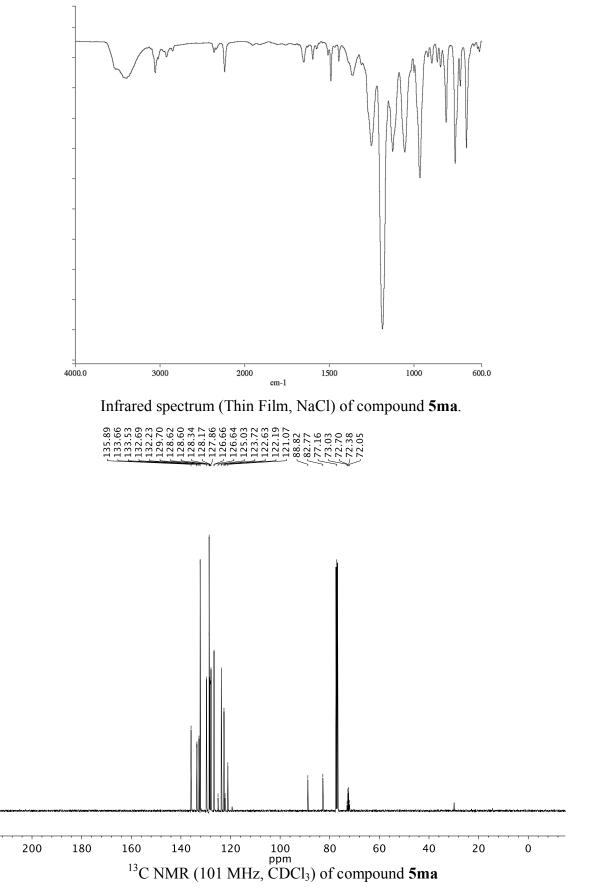
¹⁹F NMR (282 MHz, CDCl₃) of compound **5ja**

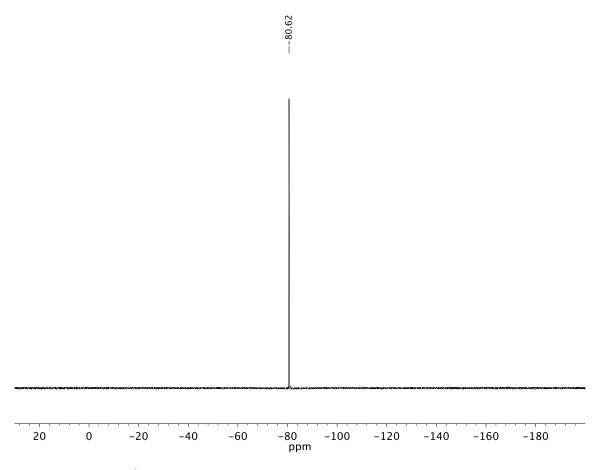

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound $\mathbf{5ka}$

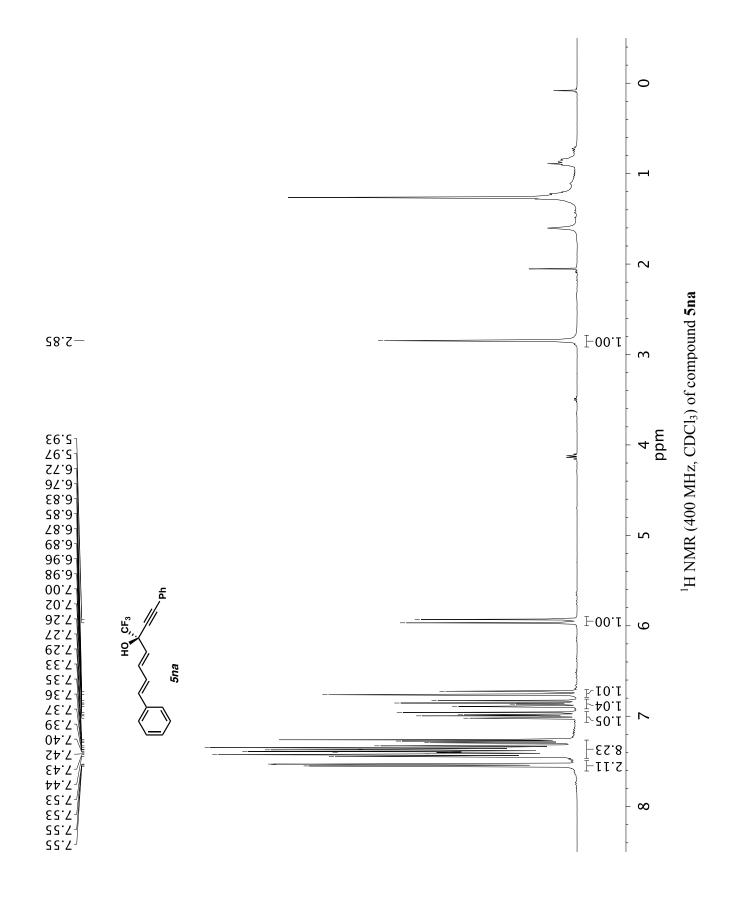

S116

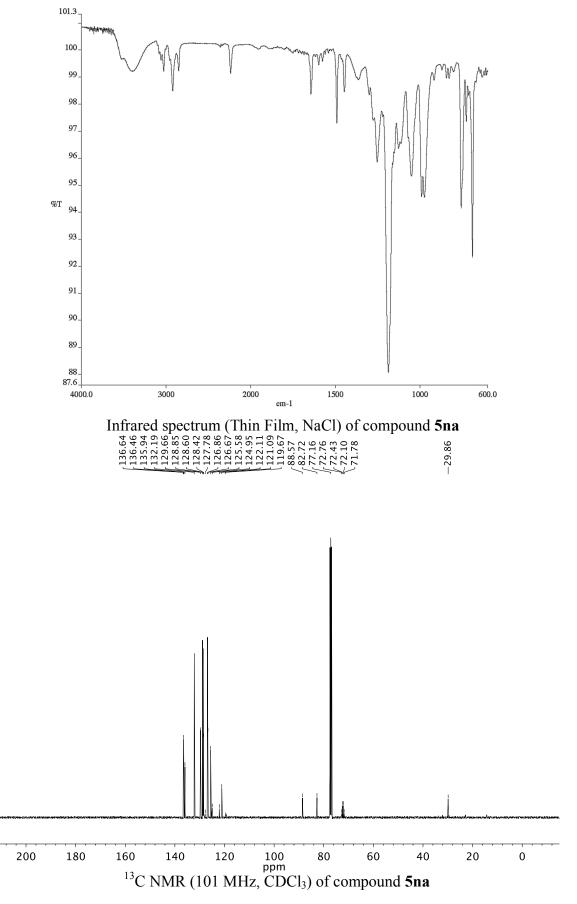

¹⁹F NMR (282 MHz, CDCl₃) of compound **5ka**

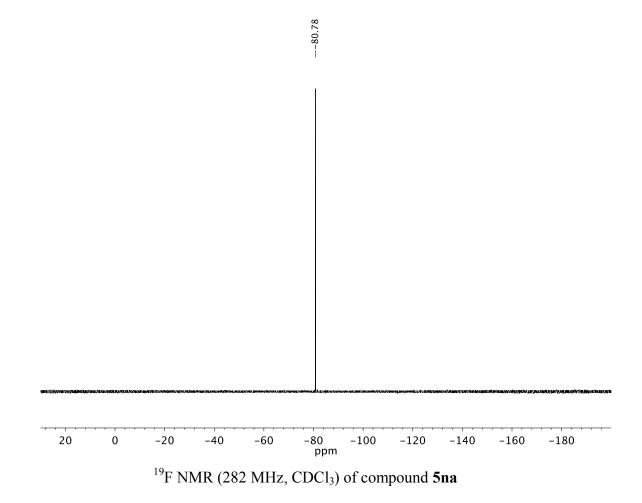

S118

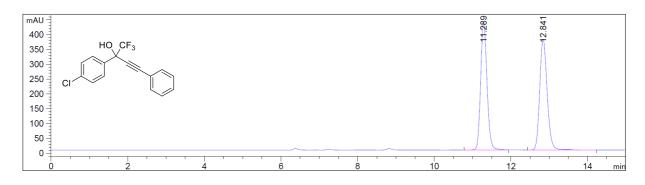

S119


¹⁹F NMR (282 MHz, CDCl₃) of compound **5la**

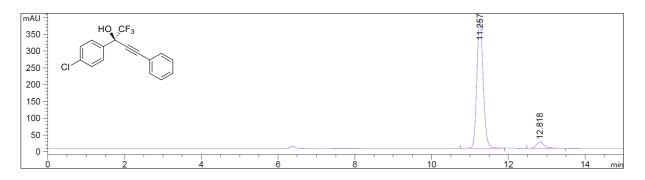



S122

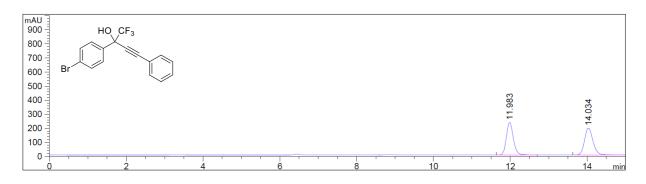

¹⁹F NMR (282 MHz, CDCl₃) of compound **5ma**


S124

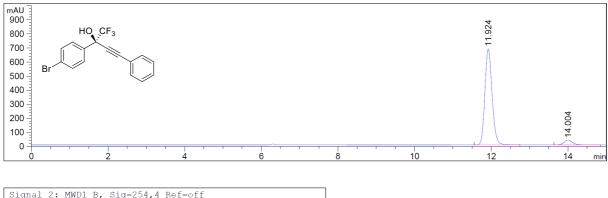
S125



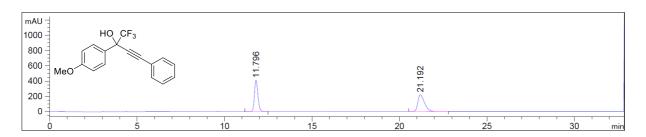
Racemic 3ca


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]	[min]	[mAU*s]	[mAU]	S
1 11.289 BV 2 12.841 VB	0.1786	4981.56006	431.86307	49.7393
Totals :		1.00153e4	806.43863	

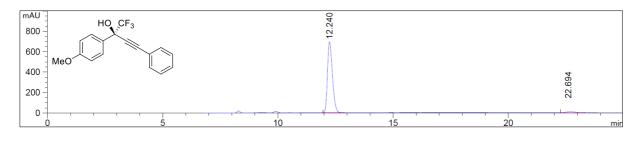
Enantioenriched 3ca


Signa	al 2: MWI	D1 B,	Sig=254,	4 Ref=off		
Peak #	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1				4376.18311 264.73257		
2	12.818	BV	0.2167	264.13231	18.74982	5.7043
Total	ls :			4640.91568	400.81779	

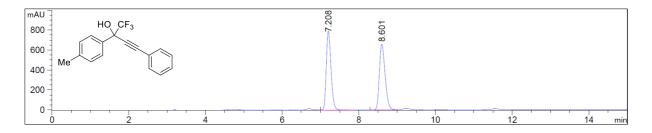
Racemic 3da


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]		Area [mAU*s]	Height [mAU]	Area %
1 11.983 BB 2 14.034 VB	0.1939	2885.78491 2887.32275		49.9867 50.0133
Totals :		5773.10767	421.68034	

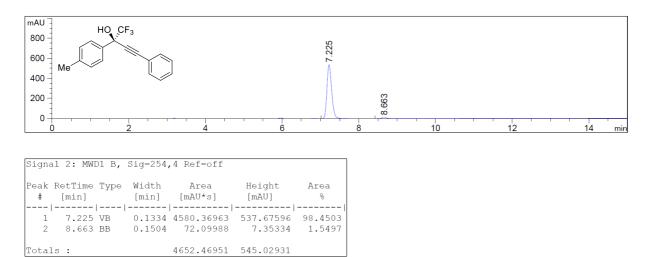
Enantioenriched 3da


SIGNAL Z: MWDI B,	51g=204,	,4 Kel=Oll			
Peak RetTime Type # [min]	[min]	[mAU*s]	Height [mAU]	Area %	
 1 11.924 BB			681.41754	94.5631	
2 14.004 BB	0.2339	509.27783	33.40222	5.4369	
Totals :		9367.09521	714.81976		

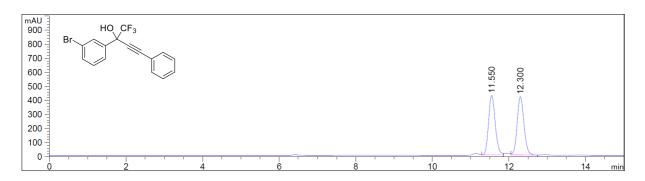
Racemic 3ea


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]	Width [min]		Height [mAU]	Area %
 1 11.796 BB 2 21.192 BB		5615.20752		
Totals :		1.13076e4	626.13878	

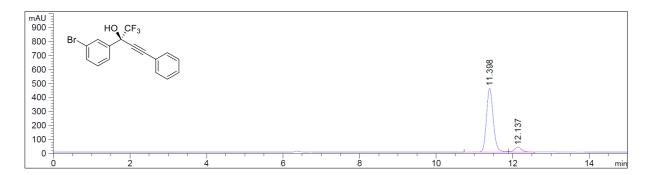
Enantioenriched 3ea


Signa	al 2: MWI	D1 B,	Sig=254	4 Ref=off		
#	[min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	12.240	MM T	0.2478	1.03469e4 217.14453		97.9445
Total		1414 1	0.4294	1.05640e4		2.0333

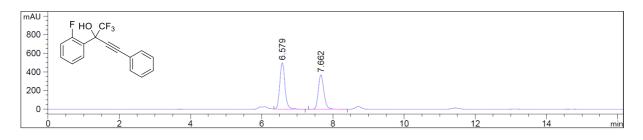
Racemic 3fa


				1 - 0 - 00		
Signal	2: MWD	тв,	Sig=254,	4 Ref=off		
Peak Re	etTime	Type	Width	Area	Height	Area
	[min]	71	[min]	[mAU*s]	[mAU]	8
	[[[[]]]]		[[[[]]]]	[1010 5]	[1010]	
1	7.208	VB	0.1318	6763.79443	790.41278	49.6057
2	8.601	BV	0.1660	6871.33252	657.30743	50.3943
_						
				1 0 00 5 1 4	1447 70001	
Totals	:			1.36351e4	144/./2021	

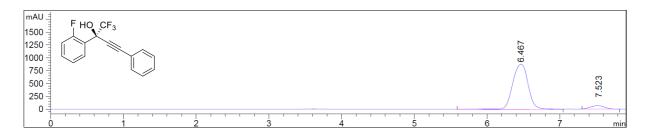
Enantioenriched 3fa


Racemic 3ga

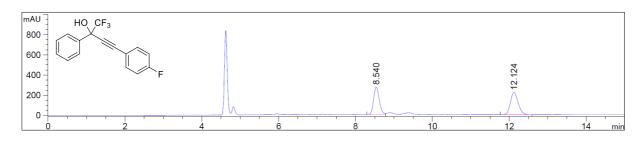
Totals :


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 11.550 BV 2 12.300 VB		 5098.31445 5102.57080		49.9791 50.0209
Totals :		1.02009e4	836.10858	

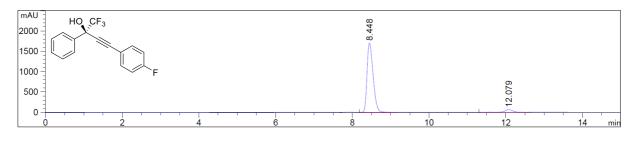
Enantioenriched 3ga


Peak	RetTime Ty	pe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	م
 1 2	 11.398 BV 12.137 VV		5573.68750 440.57138	455.13403	92.674

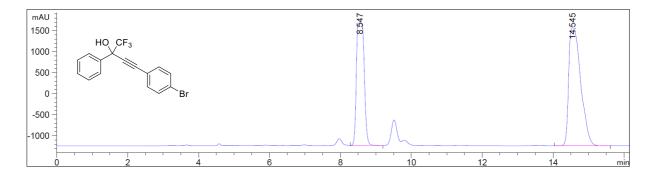
Racemic 3ha


Signal	2: MWI	о1 В,	Sig=254,	.4 Ref=off		
				Area [mAU*s]	-	Area %
1	6.579	BB	0.1575	5030.50830	499.48083	55.6302
2	7.662	BV	0.1671	4012.25366	368.32654	44.3698
Totals	:			9042.76196	867.80737	

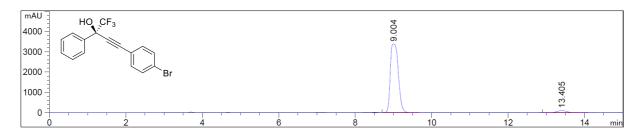
Enantioenriched 3ha


Signa	1 2: MWI	D1 B,	Sig=254,	4 Ref=off		
Peak #	RetTime [min]			Area [mAU*s]		Area %
1	6.467	MM T	0.2475	1.30589e4	879.53400	93.6053
2	7.523	MM T	0.2215	892.12994	67.11796	6.3947
Total	s:			1.39510e4	946.65195	

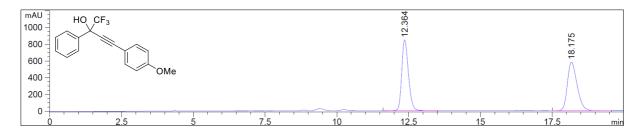
Racemic 3ab


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]		Area [mAU*s]	Height [mAU]	Area %
1 8.540 BV 2 12.124 BV		2771.67334 3095.34009		
Totals :		5867.01343	491.00531	

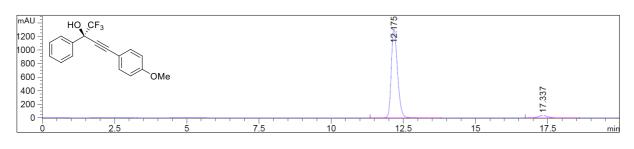
Enantioenriched 3ab


Signal 2: MWD1 B,	Sig=254	4 Ref=off		
Peak RetTime Type # [min]	Width [min]		J	Area %
1 8.448 VV 2 12.079 VV				
Totals :		1.94533e4	1765.04211	

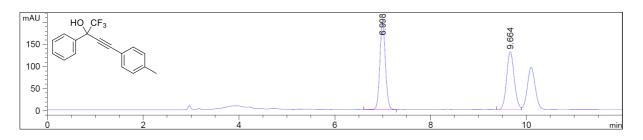
Racemic 3ac


Signal 2: MWD1 B,	Sig=254,	,4 Ref=off		
Peak RetTime Type # [min]	[min]	[mAU*s]		Area %
1 8.547 VB 2 14.545 BB	0.2459		2914.54517	40.3203 59.6797
Totals :		1.10231e5	5725.73145	

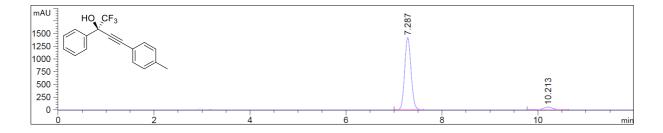
Enantioenriched 3ac


Signa	al 2: MWI	о1 в,	Sig=254,	4 Ref=off		
#	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	9.004	VV			3385.17822 104.20264	
Total	s:			5.04925e4	3489.38087	

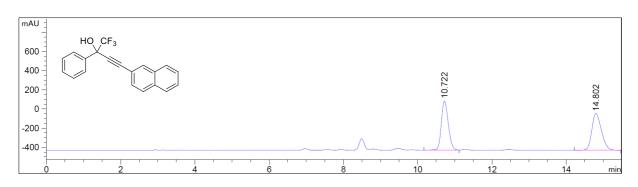
Racemic 3ad


Signal 2: 1	MWD1 B,	Sig=254,	4 Ref=off		
]	[min]	[mAU*s]	[mAU]	Area %
1 12.3	64 BV	0.2492	1.37259e4	846.13507	50.3008
2 18.1	75 BB	0.3607	1.35618e4	580.18530	49.6992
Totals :			2.72877e4	1426.32037	

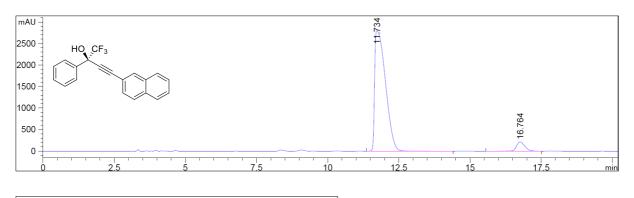
Enantioenriched 3ad


Signal 2: MWD1 B,	Sig=254,	4 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 12.175 BV 2 17.337 BB	0.2292	1.93857e4		
Totals :		2.00525e4	1338.81763	

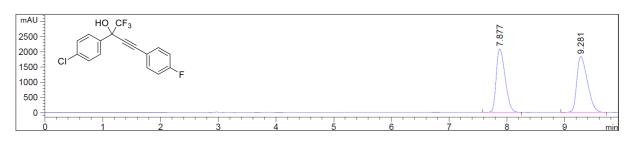
Racemic 3ae


:	Signal	2: MW1	D1 B,	Sig=254,	4 Ref=off		
1		etTime [min]			Area [mAU*s]	Height [mAU]	Area %
·	-						
	1	6.998	VV	0.1267	1602.97388	197.45538	52.4931
	2	9.664	BV	0.1732	1450.71130	130.96457	47.5069
	Totals	:			3053.68518	328.41995	

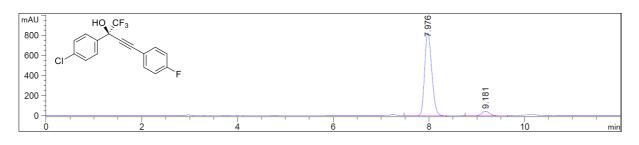
Enantioenriched 3ae


Signal 2: MWD1 B,	Sig=254,	,4 Ref=off		
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 7.287 BV 2 10.213 VV		1.30561e4 647.19513		95.2771 4.7229
Totals :		1.37033e4	1473.58963	

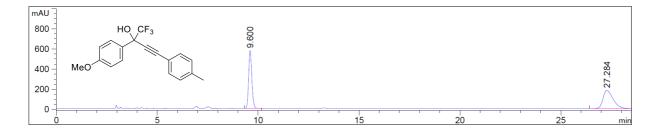
Racemic 3af


Signa	al 2: MWI	D1 B,	Sig=254,	4 Ref=off		
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	10.722 14.802			6669.84424 6872.76123		49.2508 50.7492
Total	ls :			1.35426e4	896.95724	

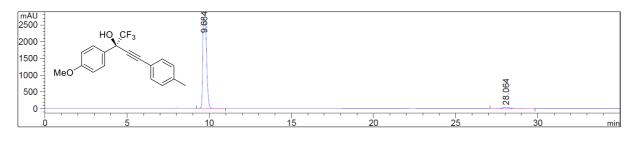
Enantioenriched 3af


Signa	1 2: MWI	О1 В,	Sig=254,	,4 Rei=oii		
Peak #	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.734	BV	0.4197	7.37367e4	2795.73999	94.5055
2	16.764	BV	0.3041	4287.04248	215.23865	5.4945
Total	s:			7.80238e4	3010.97864	

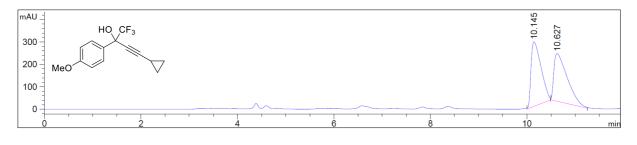
Racemic 3cb


Signal	2: MWD:	1 B,	Sig=254,	4 Ref=off		
Peak R #	etTime ([min]		[min]	Area [mAU*s]	[mAU]	Area %
-						
1	7.877	VV	0.1687	2.23440e4	2090.93481	48.8914
2	9.281 1	BB	0.2003	2.33573e4	1837.32886	51.1086
Totals	:			4.57013e4	3928.26367	

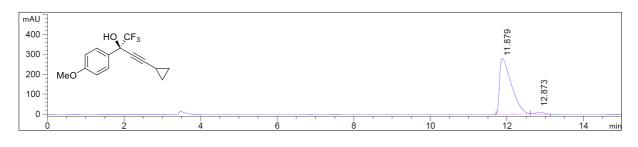
Enantioenriched 3cb


Signal	2: MWD:	1 В,	Sig=254,	4 Ref=off		
	etTime ? [min]	Гуре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
				 8487.25586 510.86423		94.3225
Totals		U v	0.1750	8998.12009		3.0773

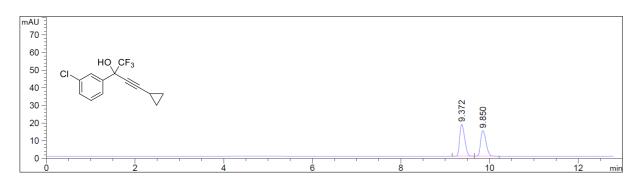
Racemic 3ee


Signal 2: MWD1 B,	Sig=254	,4 Ref=off							
Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %					
1 9.600 VV	0.1712	6343.68701	572.83759	50.7212					
2 27.284 BBA	0.5220	6163.29248	180.65030	49.2788					
Totals : 1.25070e4 753.48788									

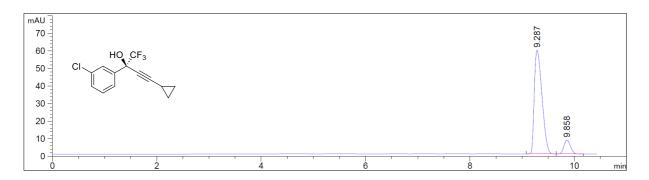
Enantioenriched 3ee


Signal 2: MWD1 B,	Sig=254,4	Ref=off		
Peak RetTime Type # [min]		Area [mAU*s]	Height [mAU]	Area %
1 9.684 VV 2 28.064 BB				
Totals :	4.	.45806e4	2686.47131	

Racemic 3eg

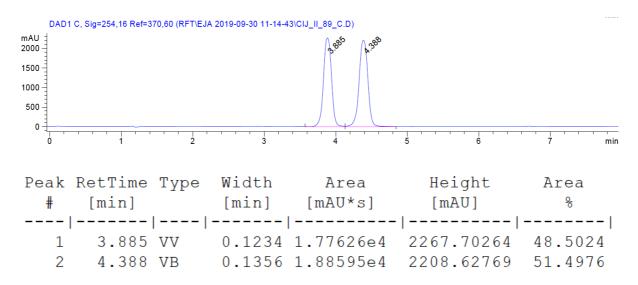

Signa	1 2: MWI	О1 В,	Sig=254,	4 Ref=off		
#	[min]		[min]	Area [mAU*s]	[mAU]	Area %
1	10.145	ММ Т	0.2390	4132.77051 4110.03418	288.21365	
Total	s:			8242.80469	501.44354	

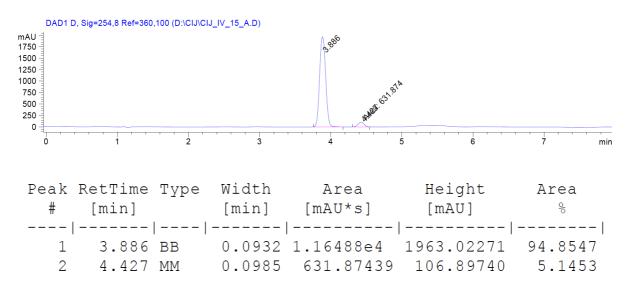
Enantioenriched 3eg


Signa	1 2: MWI	D1 B,	Sig=254,	4 Ref=off		
Peak #	RetTime [min]	~ ~	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11 979	мм т	0 3534	5950.80176	280 63693	97 6302
_				144.44800		

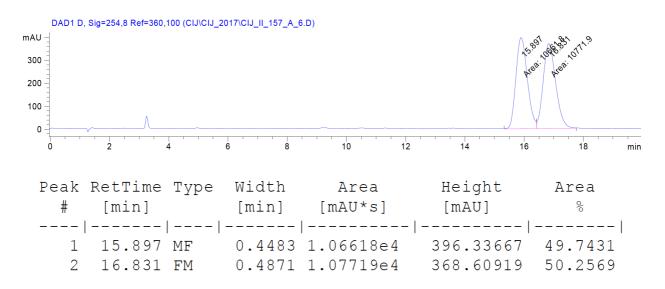
Racemic 3eh

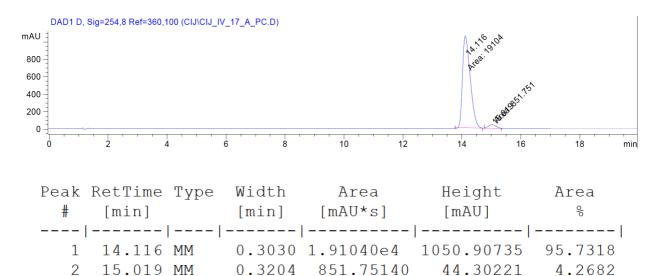
Signal	1: MWI	01 A,	Sig=254,	4 Ref=off		
	etTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
	9.372 9.850				18.09298 14.46669	53.5707 46.4293
Totals	:			262.27235	32.55967	

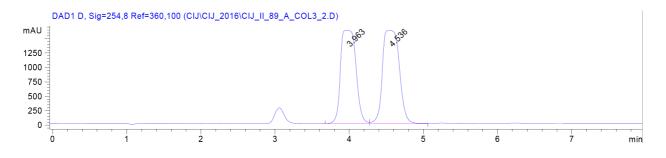

Enantioenriched 3eh


Signal	1: MWD1	A, Sig=254	,4 Ref=off		
1	etTime Ty [min]	ype Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2			603.86737 68.90726	 59.24526 7.96194	 89.7577 10.2423
Totals	:		672.77464	67.20720	

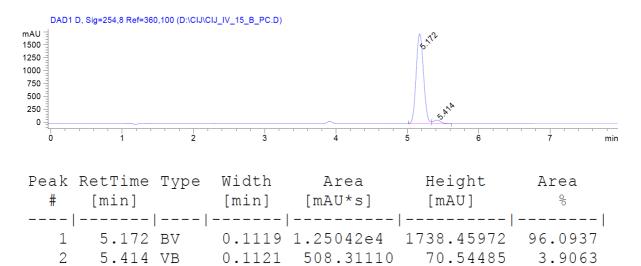
SFC data for Vinyl Trifluoromethyl Ketone Products:


Racemic 5aa

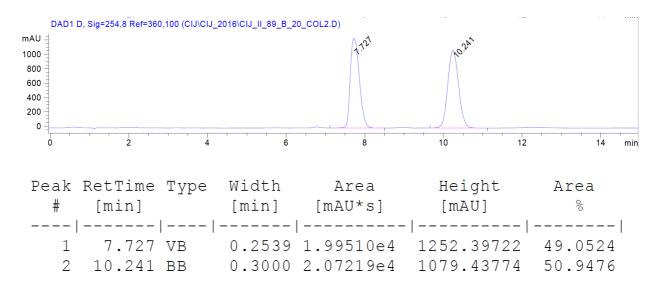

Enantioenriched 5aa


Racemic 5ba

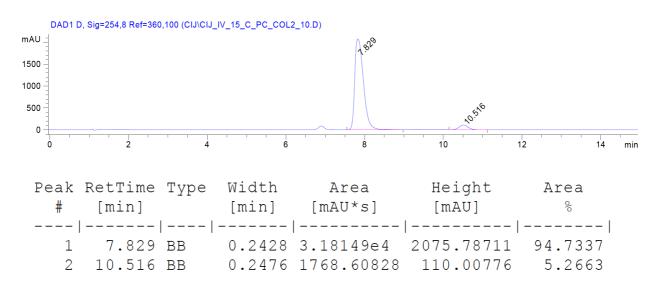
Enantioenriched 5ba

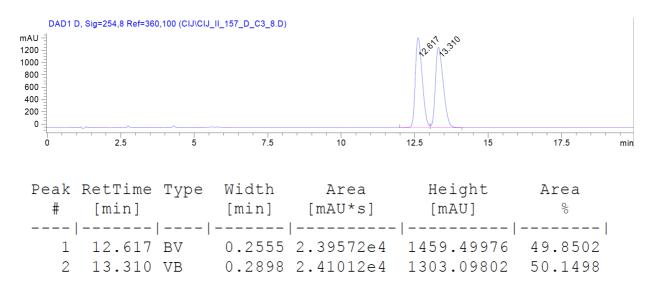


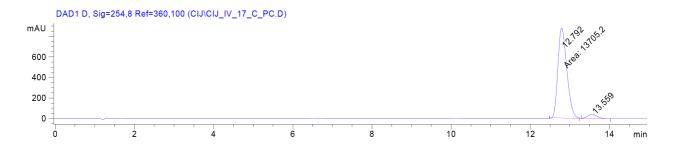
Racemic 5ca



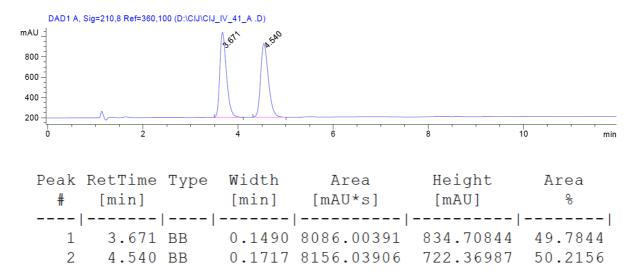
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	3.963	BV	0.2325	2.33956e4	1620.28918	47.7740
2	4.536	VV	0.2561	2.55758e4	1620.41089	52.2260


Enantioenriched 5ca

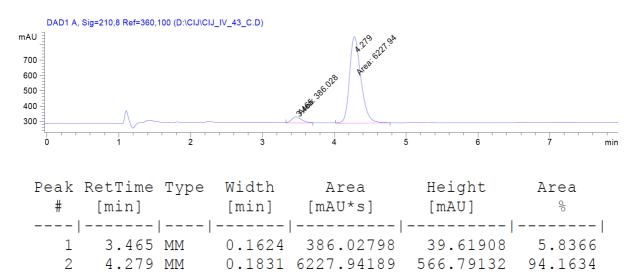

Racemic 5da


Enantioenriched 5da

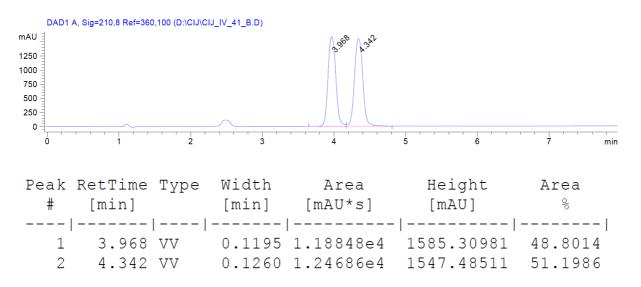
Racemic 5ea

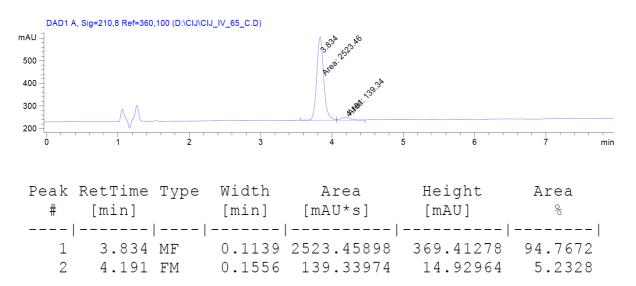


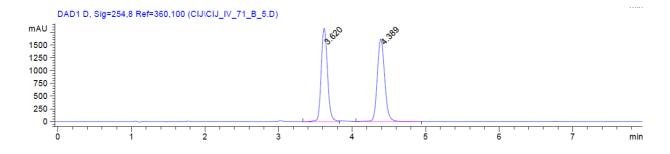
Enantioenriched 5ea



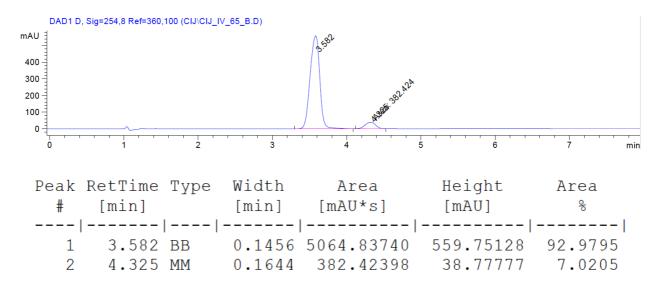
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	12.792	MM	0.2605	1.37052e4	876.92377	95.0351
2	13.559	VB	0.2631	715.99207	41.95095	4.9649


Racemic 5fa

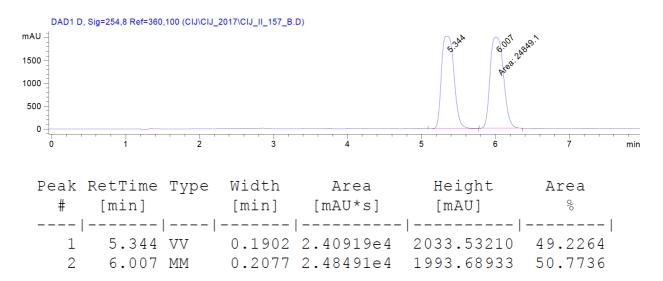

Enantioenriched 5fa


Racemic 5ga

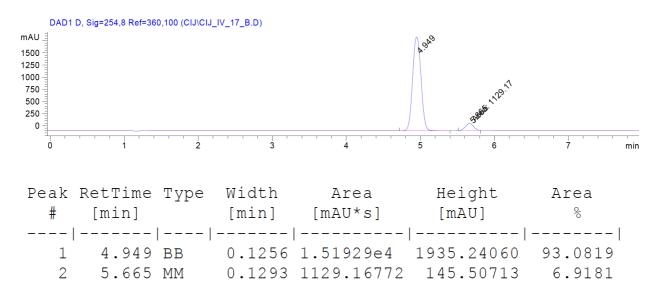
Enantioenriched 5ga

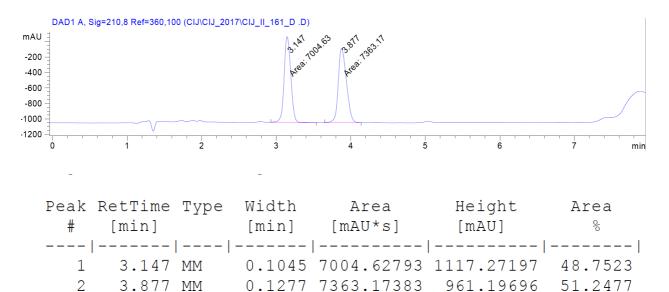


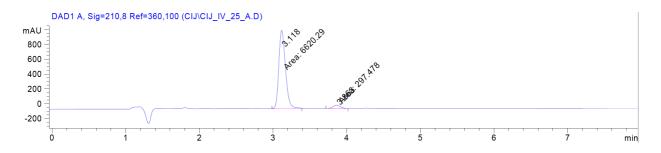
Racemic 5ha



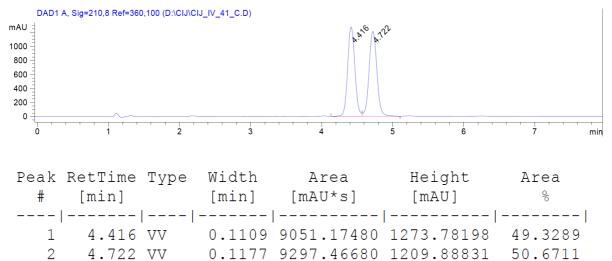
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	3.620	VV	0.0938	1.09643e4	1831.39258	48.9468
2	4.389	VV	0.1102	1.14361e4	1623.07410	51.0532


Enantioenriched 5ha

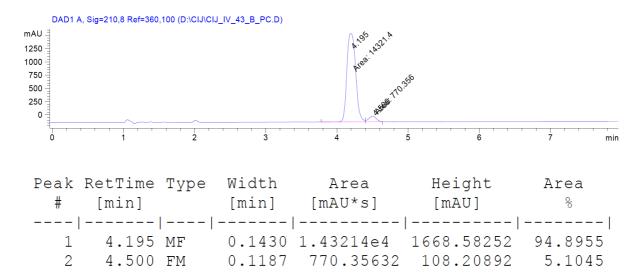

Racemic 5ia

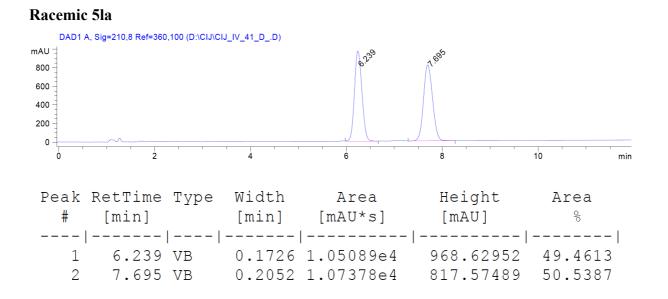

Enantioenriched 5ia

Racemic 5ja

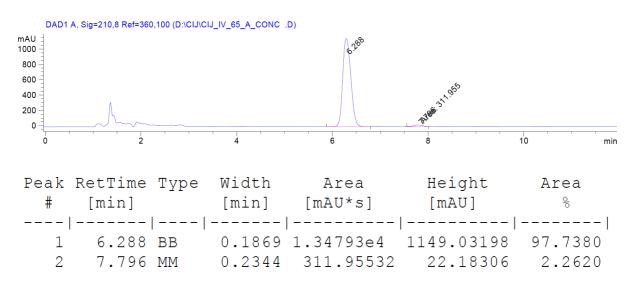


Enantioenriched 5ja

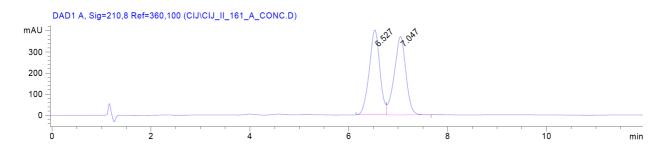



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	3.118	MM	0.1040	6620.28564	1060.52246	95.6998
2	3.863	MM	0.1079	297.47842	45.96951	4.3002

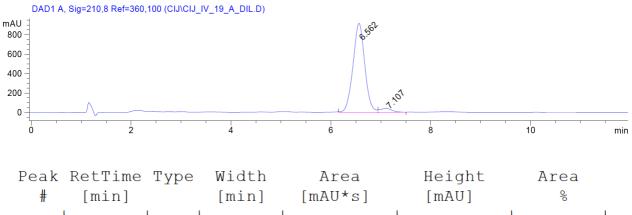
Racemic 5ka



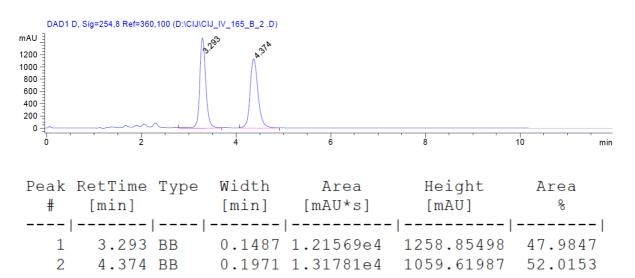
Enantioenriched 5ka



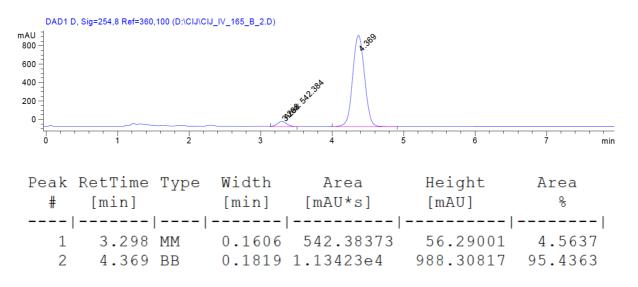
Enantioenriched 5la

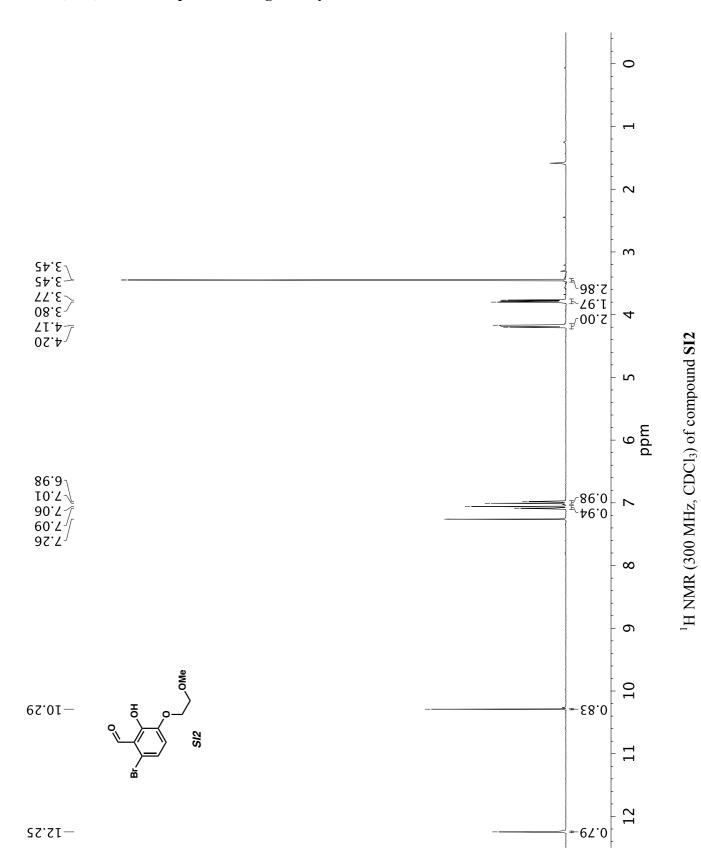


Racemic 5ma

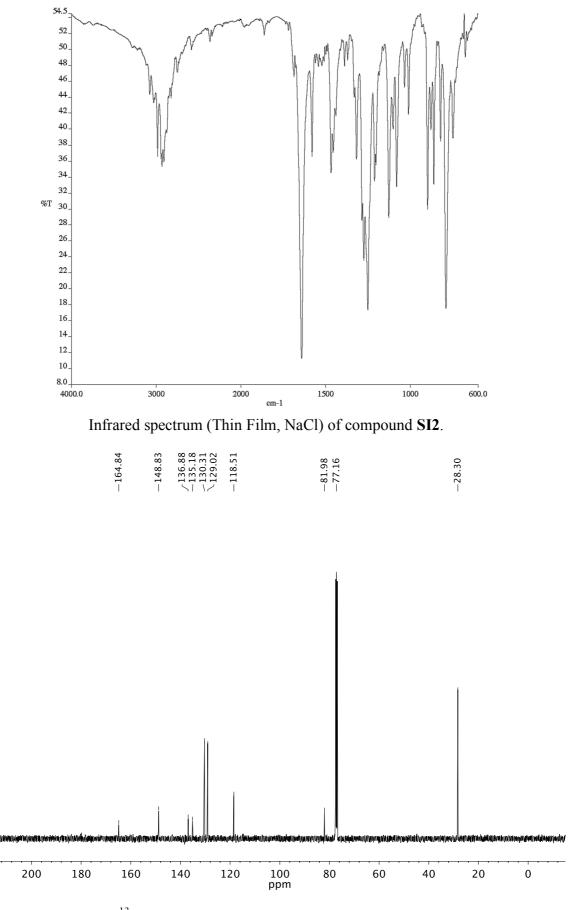

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	6.527	BV	0.2267	6022.24268	402.25772	49.7994
2	7.047	VB	0.2426	6070.75537	371.66992	50.2006

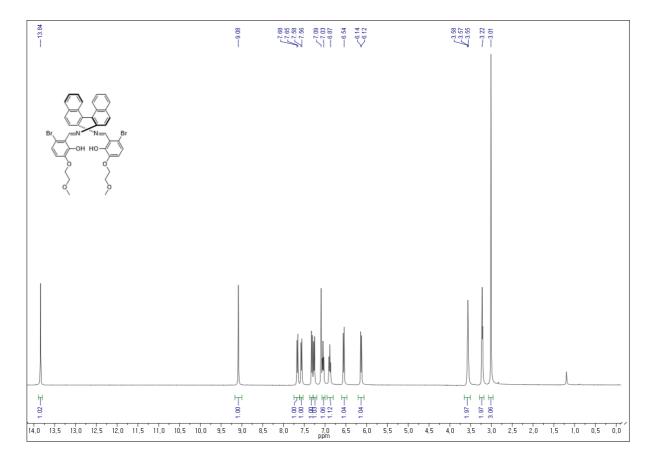
Enantioenriched 5ma

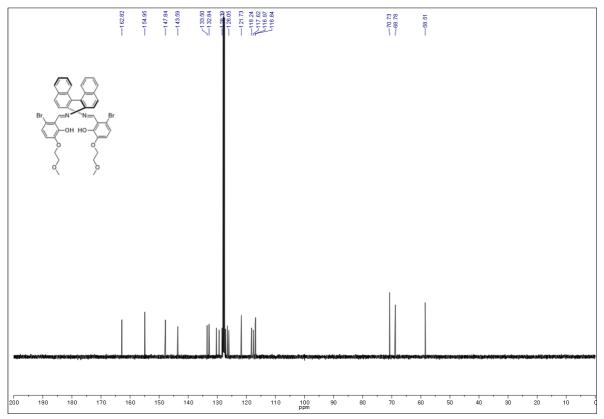


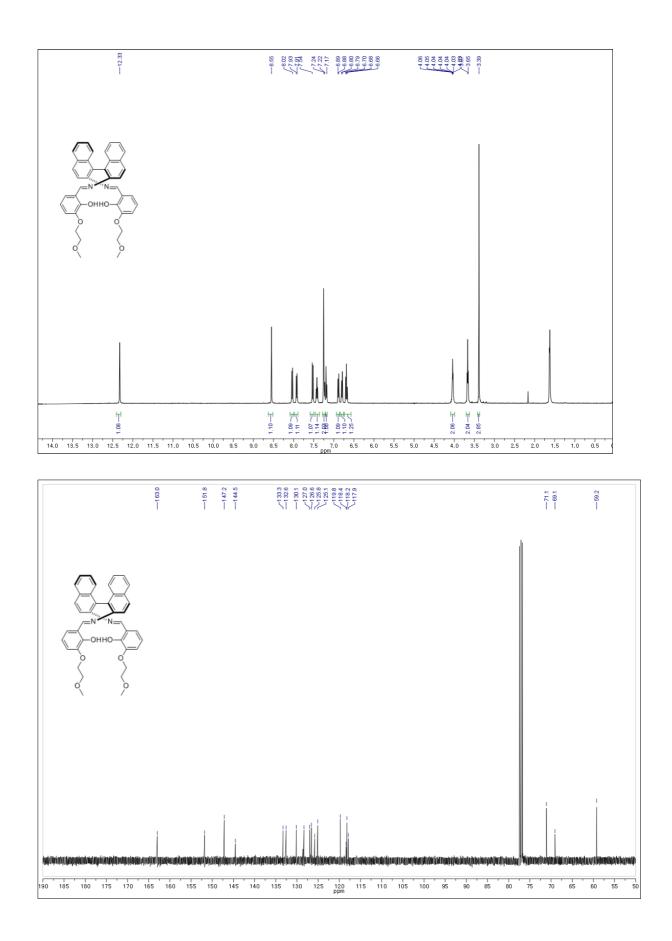

1	6.562	BV	0.2463	1.49132e4	914.24634	96.2033
2	7.107	VB	0.2379	588.55762	37.34389	3.7967

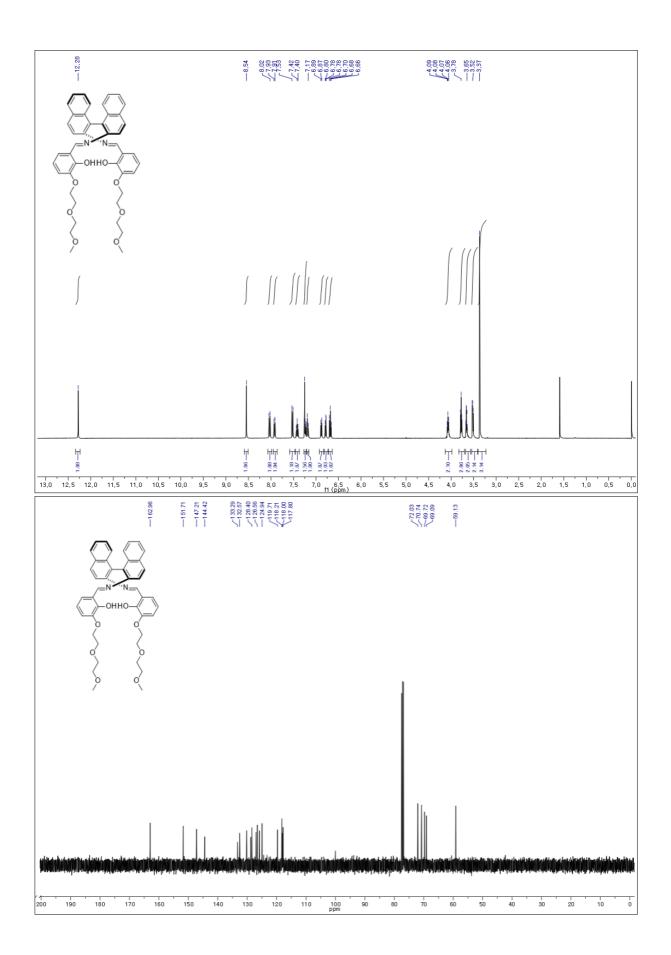
Racemic 5na

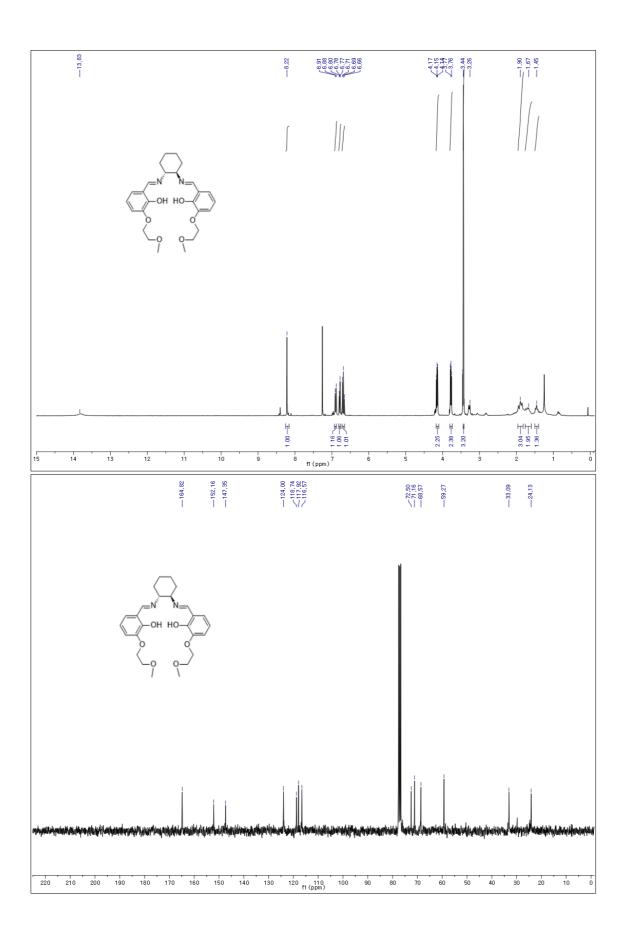

Enantioenriched 5na

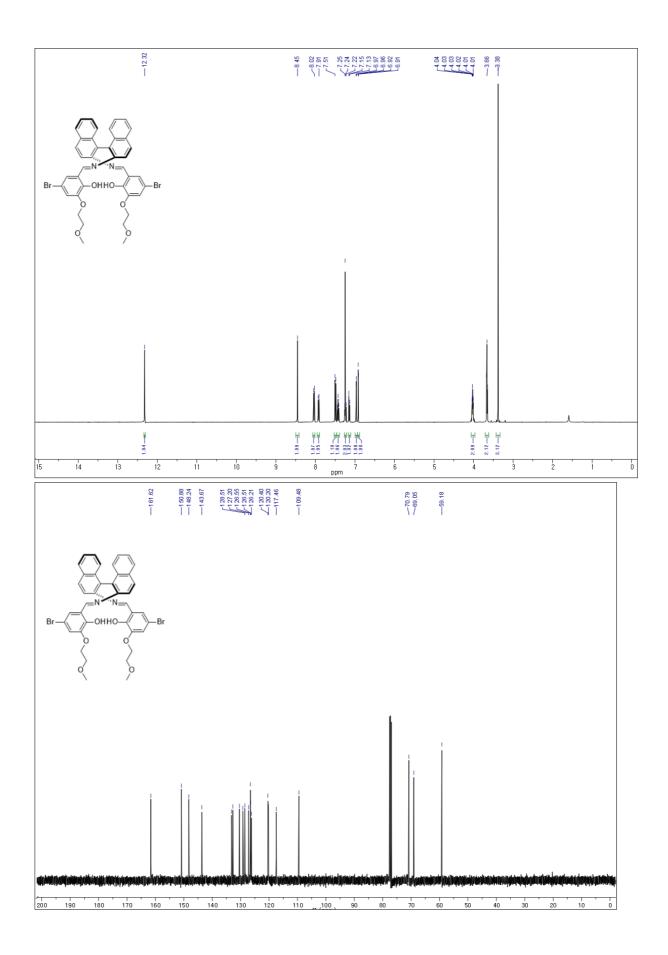


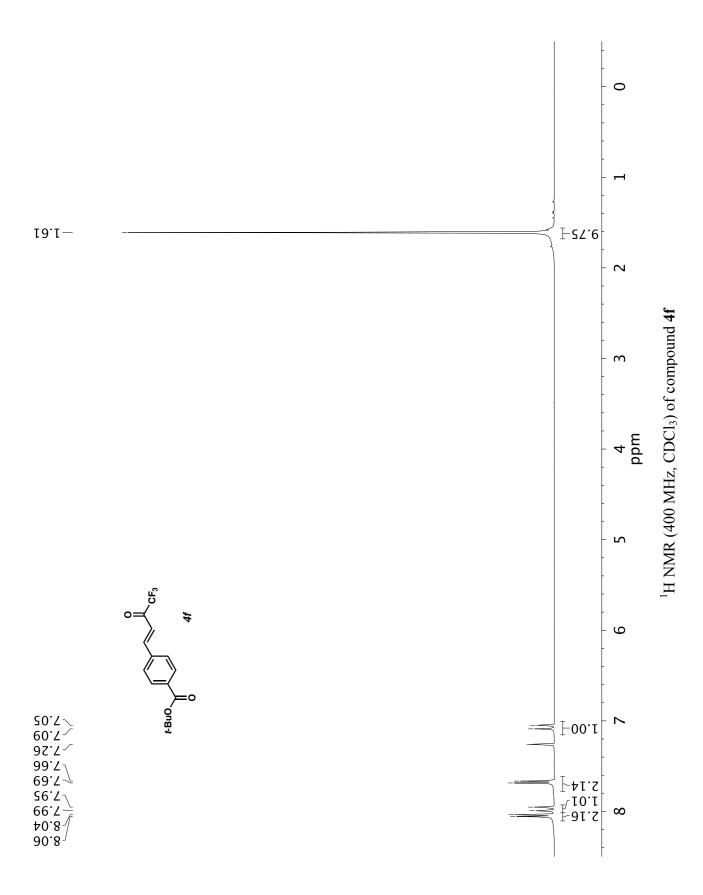

¹H, ¹³C, ¹⁹F NMR Spectra for Ligands Synthesized:

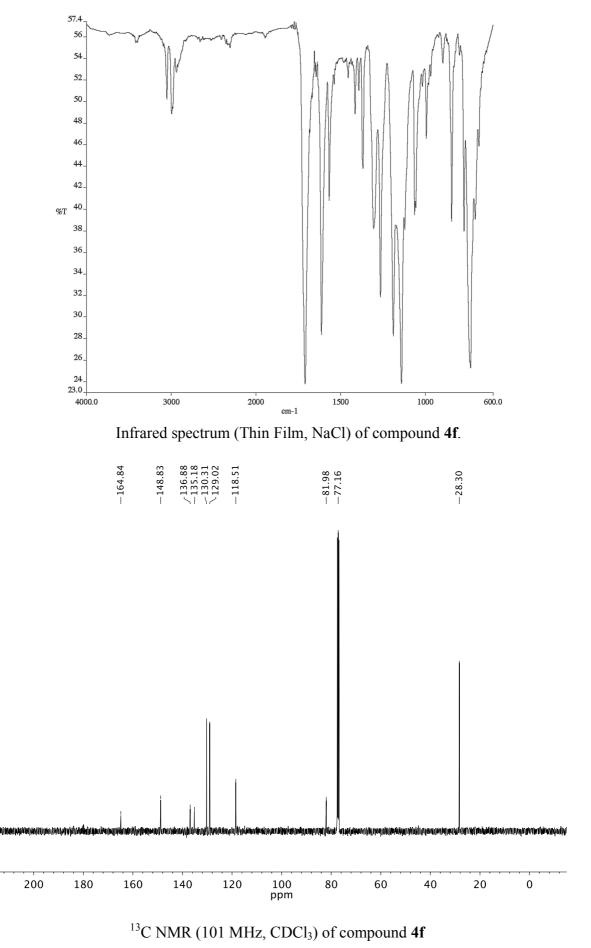

S58

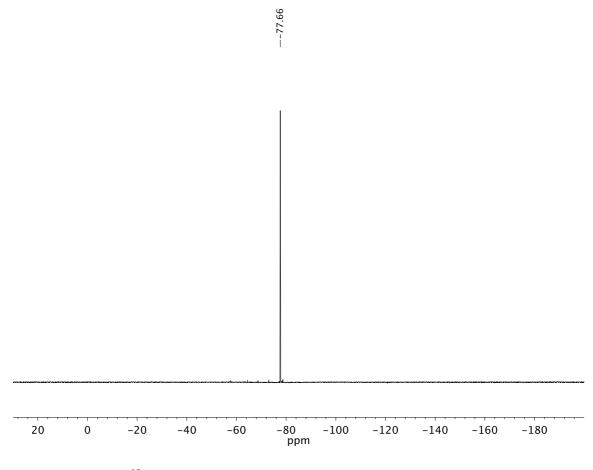


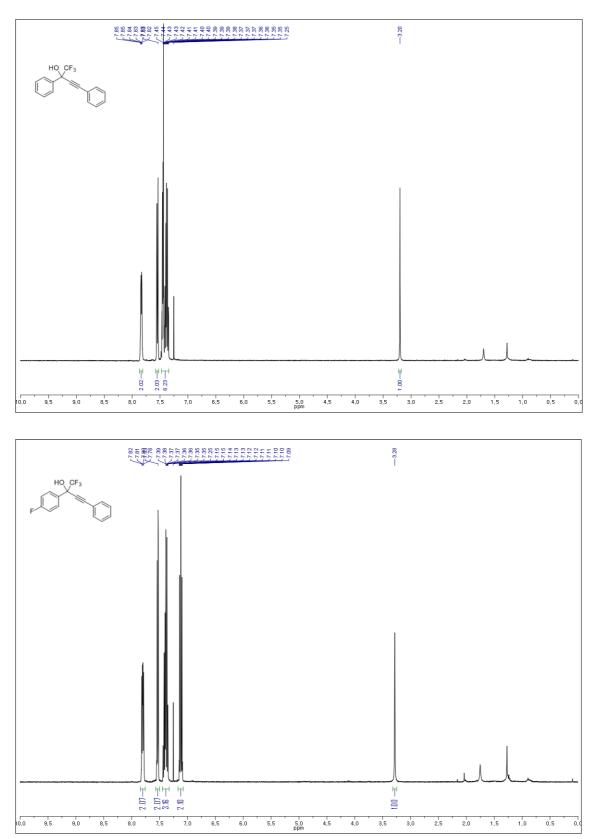


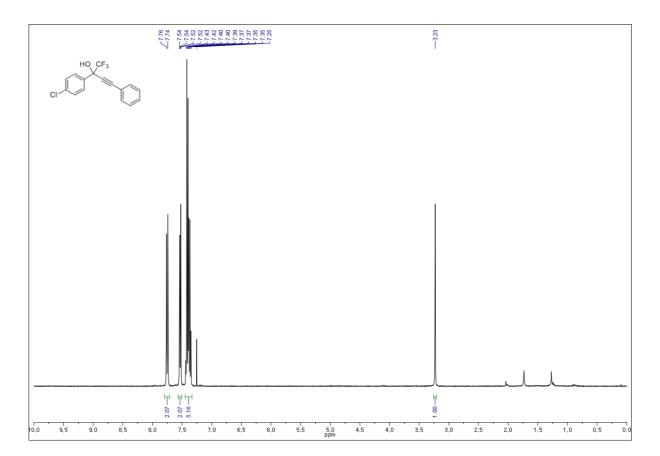


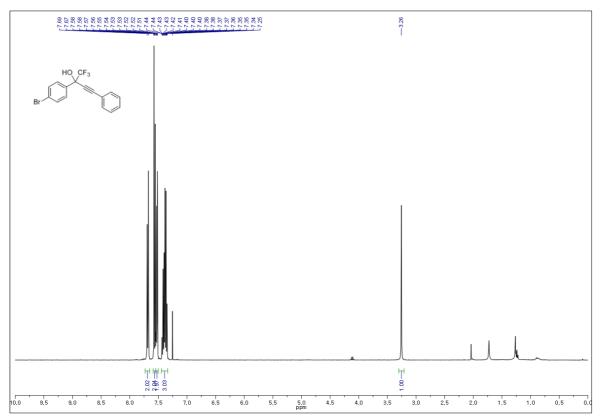


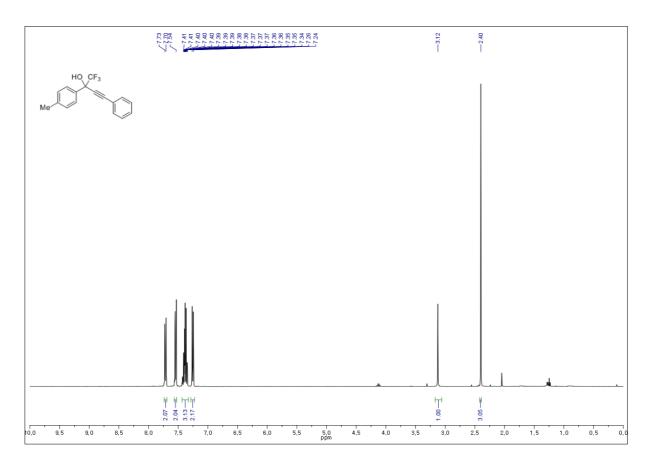


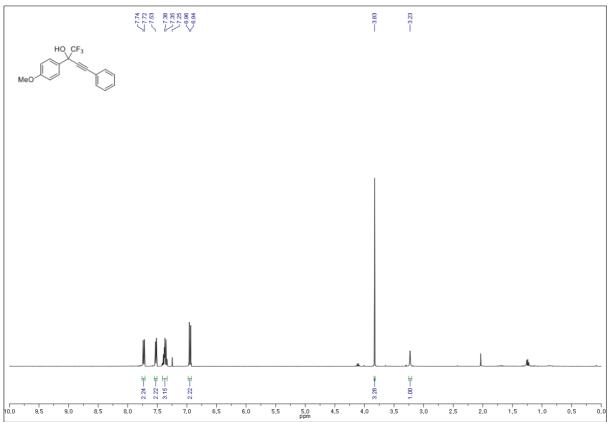


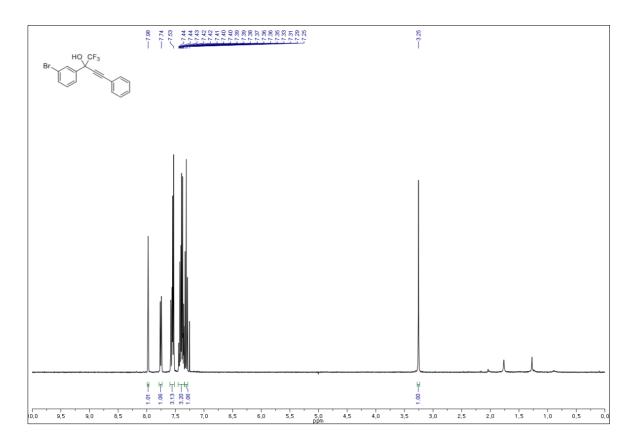







¹⁹F NMR (282 MHz, CDCl₃) of compound 4f




NMR and IR Data for Trifluoromethyl Products

