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Abstract—The development of an approach to the alkaloid communesin B (2) is presented. The approach is based on
considerations of a possible biosynthetic sequence involving an oxidative coupling of tryptamine with a derivative of the ergot
alkaloid aurantioclavine. Structure revision is also suggested for the recently isolated microfilament disrupting alkaloid nomofun-
gin. © 2003 Elsevier Science Ltd. All rights reserved.

Indole alkaloids and related indoline-containing natural
products are among the most intensely studied and
interesting classes of molecules available for synthetic
chemists. We have recently initiated synthetic studies
directed toward the indoline alkaloids communesins A
(1) and B (2).1 Interestingly, the structure of com-
munesin B is nearly identical to that of nomofungin (3),
a natural product that was recently reported2 (Fig. 1).
Herein, we report our preliminary studies directed
toward the synthesis of the communesins and attempt
to clarify the structure of nomofungin based on a
biosynthetic hypothesis and 1H and 13C NMR chemical
shift data of synthetic intermediates.

Biogenetically, the communesins can be thought of as
arising via an oxidative union of tryptamine (6) with
the related natural product, aurantioclavine (7, Scheme
1).3 Perhaps more provocative is the notion that an
oxidation of tryptamine leads to the quinone methide
imine 9, which undergoes a Diels–Alder reaction with

aurantioclavine derivative 8 to form polycyclic interme-
diate 10. This intermediate, possessing a highly twisted
lactam (analogous to the strained quinuclidone ring
system) should be easily cleaved by the residual primary
amine to produce the spiro lactam 11. Biosynthetic
reduction of the lactam, aminal closure, epoxidation,
and acylation affords communesins A and B. It was
based on this hypothesis that we began our investiga-
tions. It is also intriguing to note that there is not a
reasonable biogenetic equivalent that would lead to the
proposed structure for nomofungin.

This conjecture prompted us to examine the reported
1H and 13C NMR data for nomofungin more closely.
Interestingly, the chemical shifts and coupling constants
are essentially identical to those reported for com-
munesin B. In particular, the chemical shift of the C(6)
proton is reported to be 4.70 for communesin B and
4.69 for nomofungin. Analogously, the 13C NMR
chemical shift for C(6) is 82.4 ppm for both com-
pounds. From these data, and the similarity of the full
NMR data set, we conclude that communesin B and
nomofungin must be the same molecule. Furthermore,
comparison to known chemical shift values for diami-
nal and aminal residues confirms the tendency for the
1H NMR chemical shifts of the former to reside upfield
relative to the latter (4.5–5.5 ppm versus 5.5–6.4 ppm).4

Similarly, 13C chemical shifts for aminal carbons are
typically in the range of 97.0–107.0 ppm, while those
for diaminal carbons are between 80.0–85.0 ppm.5

Given the 1H and 13C NMR chemical shift data and the
biogenetic proposal outlined in Scheme 1, we have
undertaken the synthesis of the structure proposed for
communesin B (2).6,7

Figure 1.
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Scheme 1.

Scheme 3.

diastereomers was possible by preparative thin layer
silica gel chromatography.12 Importantly, the 13C NMR
residues for C(6) of diastereomers 19a and 19b were at
84.8 and 83.9 ppm, again in full accord with the data
for the communesins and nomofungin.

In conclusion, we propose that the natural products
nomofungin and communesin B are, in fact, identical
molecules and that the structure of communesin B more
correctly represents the actual structure. We initially
came to this conclusion based on biosynthetic thoughts
that have influenced our synthetic direction. More
recently, 1H NMR chemical shift data of synthetic
analogs to the communesin structure have bolstered
this argument. Finally, a potential intermediate (18) in
our synthesis of communesin B has been prepared by a
[4+2] cycloaddition route (Scheme 3) that is similar to
the biosynthetic proposal outlined in Scheme 1.13

Efforts to complete the total synthesis of communesin
B (a.k.a. nomofungin) by such biomimetic routes are
ongoing. Progress toward these ends will be reported in
due course.
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These shifts are in good accord with the values of
4.69–4.70 ppm (1H) and 82.4 ppm (13C) reported for
both communesin B and nomofungin, strongly suggest-
ing that the communesin structure is the appropriate
representation for the natural product.

More recently, we have prepared (±)-aurantioclavine
(7) by known methods11 and utilized the N-BOC-N-
methyl derivative 17 in the cycloaddition reaction with
13 (Scheme 3). Smooth cycloaddition proceeded again
upon treatment with Cs2CO3 to produce an adduct that
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cycloadduct was produced as a 1:1 mixture of
diastereomers with respect to the methylpropenyl side
chain at C(11). Following cleavage of the sulfonyl
group with Mg and NH4Cl in MeOH, separation of the

Scheme 2.
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