## Supplementary Materials for

# The CryoEM method MicroED as a powerful tool for small molecule structure determination

Christopher G. Jones<sup>1†</sup>, Michael W. Martynowycz<sup>2†</sup>, Johan Hattne<sup>2</sup>, Tyler J. Fulton<sup>3</sup>, Brian M. Stoltz<sup>3\$</sup>, Jose A. Rodriguez<sup>1\$</sup>, Hosea M. Nelson<sup>1\$</sup>, Tamir Gonen<sup>2\$</sup>

<sup>1</sup>Department of Chemistry and Biochemistry, University of California, Los Angeles, 90095, USA

<sup>2</sup>Howard Hughes Medical Institute, Departments of Biological Chemistry and Physiology, University of California, Los Angeles, 90095, USA

<sup>3</sup>The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, 91125, USA

<sup>\$</sup>Correspondence to: <u>stoltz@caltech.edu</u>, <u>jrodriguez@chem.ucla.edu</u>, <u>hosea@chem.ucla.edu</u>, <u>tgonen@ucla.edu</u>

#### This PDF file includes:

Materials and Methods Supplementary Text Figs. S1 to S11 Captions for Movies S1 References

#### Other Supporting Online Material for this manuscript includes the following:

Movies S1

**Table of Contents** 

| 1. Materials and Methods        |   |
|---------------------------------|---|
| 1.1 Sample Preparation          | 2 |
| 1.2 Instrument Parameters       |   |
| 1.3 Data Collection Procedure   | 4 |
| 2. Compound Data and Statistics | 5 |
| 3. Caption for Movie S1         |   |

#### 1. Materials and methods

All commercial samples were used as received with no additional crystallization or chemical modification. Ethisterone, cinchonine, carbamazepine, and biotin were purchased from Sigma-Aldrich. Brucine was purchased from the The Matheson Company, Inc. Progesterone was purchased from Preparations Laboratories Inc. Thiostrepton was purchased from EMD Millipore. CVS<sup>®</sup>-brand acetaminophen and Kroger<sup>®</sup> brand ibuprofen were used as over-the-counter medications. (+)-Limaspermadine and HKL-I-029 were synthesized according to previously reported literature procedures (*1*, *2*).

#### **1.1 Sample Preparation**

To prepare commercial compounds for MicroED, approximately 1 mg of product as received was placed between two microscope slides and ground to a fine powder. The ground powder was placed into an Eppendorf tube along with a pre-clipped Quantifoil R2/2 Cu300 or Quantifoil R1/4 Cu300 mesh grid. The TEM grid was then removed from the Eppendorf tube and gently tapped against a filter paper to remove excess powder. Non-commercial samples of HKL-I-029 and (+)-limaspermadine were concentrated under vacuum to yield a dry film and solid powder respectively. Sample grids of HKL-I-029 were prepared by adding a TEM grid directly to a 20 mL scintillation vial with gentle shaking. (+)-Limaspermadine grids were prepared by scraping the residue off the side of a 20 mL scintillation vial over a TEM grid. Once sample grids were prepared, they were subsequently plunged into liquid nitrogen, placed into the sample cartridge, and loaded into the microscope for analysis. Heterogenous sample mixtures were prepared by adding ~1 mg of biotin, carbamazepine, cinchonine, and brucine to a glass cover slide and grinding to a fine powder. The heterogenous powder was then added to an Eppendorf tube and the grid was prepared in the same manner as the homogeneous samples.

#### **1.2 Instrument Parameters**

All data were collected on a Thermo-Fischer Talos Artica electron cryomicroscope operating at an acceleration voltage of 200keV, corresponding to a wavelength of ~0.0251 Å. Screening of

the TEM grids for micro crystals was done by operating the microscope in over focused diffraction mode to minimize diffraction and hysteresis between screening and diffraction operational modes.

### **1.3 Data Collection Procedure**

MicroED data collection was collected in rolling shutter using a Thermo-Fischer CetaD CMOS 4k x 4k camera. Images were collected as a movie as the crystal was continuously rotated in the electron beam (3). Typical data collection was performed using a constant tilt rate of ~0.6 ° s<sup>-1</sup> d over an angular wedge of ~60° between the minimum and maximum tilt ranges of -72° to +72° degrees, respectively. During continuous rotation the camera integrated frames continuously at a rate of 1-3s per frame. The dose rate was calibrated to <0.03 e<sup>-</sup> Å<sup>-2</sup> s<sup>-1</sup>. Crystals selected for data collection were isolated by a selected area aperture to reduce the background noise contributions, and calibrated to eucentric height to stay in the aperture over the entire tilt range.

Diffraction movies saved as SER files were converted to SMV format using in-house software developed for the CetaD and made freely available online (https://cryoem.ucla.edu/pages/MicroED). Frames were indexed and integrated in XDS, and multiple datasets were scaled and merged using XSCALE (4, 5). The intensities were converted to SHELX format using XDSCONV(5). All structures except thiostrepton (see below) were solved by *ab initio* direct methods in SHELXT, and refined in SHELXL as previously described (6, 7).

Four datasets from thiostrepton were indexed and integrated in MOSFLM through its graphical user interface, iMosflm (8, 9). Data were merged in AIMLESS, and phased by molecular replacement in MOLREP using 1E9W as a search model (10, 11). The solution was refined using REFMAC5 with electron scattering factors to a resolution of 1.9Å with the free *R* set copied from the initial search model (12).

#### 2. Compound Data and Statistics

Individual integration and refinement statistics can be found for each compound in SI Figures 1-11 along with corresponding densities.

**3.** Movie S1. Continuous rotation MicroED data from a carbamazepine nanocrystal with corresponding resolution rings.

| acetam                                   | ninophen                      |
|------------------------------------------|-------------------------------|
| Stoichiometric formula                   | $C_8 N_1 O_2$                 |
| Temperature (K)                          | 100                           |
| Space group                              | P 21/n                        |
| Unit cell lengths a, b, c (Å)            | 6.630(2), 8.620(2), 10.790(2) |
| angles $\alpha$ , $\beta$ , $\gamma$ (°) | 90.00(3), 97.56(3), 90.00(3)  |
| Reflections (#)                          | 2300 (380)                    |
| Unique reflections (#)                   | 874 (141)                     |
| Robs                                     | 18.3 (34.7)                   |
| R <sub>meas</sub>                        | 22.8 (43.2)                   |
| $CC_{1/2}$                               | 95.2 (83.6)                   |
| Resolution (Å)                           | 0.8                           |
| Completeness (%)                         | 69.9 (70.1)                   |
| Total exposure (e° Å-2)                  | ~3                            |
| R                                        | 0.22                          |
| wR2                                      | 0.4462                        |
| GooF                                     | 2.003                         |
|                                          |                               |

Figure S1. Data processing statistics and final structure of acetaminophen.

| bi                            | otin                                                                  |  |
|-------------------------------|-----------------------------------------------------------------------|--|
| Stoichiometric formula        | C10 N2 O3 S                                                           |  |
| Temperature (K)               | 100                                                                   |  |
| Space group                   | pace group P 21 21 21                                                 |  |
| Unit cell lengths a, b, c (Å) | gths a, b, c (Å) 5.200(2), 10.310(2), 20.910(4)                       |  |
| angles α, β, γ (°)            | angles $\alpha$ , $\beta$ , $\gamma$ (°) 90.00(3), 90.00(3), 90.00(3) |  |
| Reflections (#)               | 5498 (1081)                                                           |  |
| Unique reflections (#)        | 1323 (246)                                                            |  |
| $R_{\rm obs}$                 | 20.3 (37.1)                                                           |  |
| R <sub>meas</sub>             | 23.3 (42.1)                                                           |  |
| $CC_{1/2}$                    | 95.5 (78.4)                                                           |  |
| Resolution (Å) 0.9            |                                                                       |  |
| Completeness (%)              | 82.6 (84.8)                                                           |  |
| Total exposure (e' Å-2)       | ~3                                                                    |  |
| R                             | 0.186                                                                 |  |
| wR2                           | 0.3458                                                                |  |
| GooF                          | 1.818                                                                 |  |





Figure S2. Data processing statistics and final structure of biotin.







Figure S3. Data processing statistics and final structure of brucine.

| carbamazepine                            |                                |  |
|------------------------------------------|--------------------------------|--|
| Stoichiometric formula                   | C15 N2 O                       |  |
| Temperature (K)                          | 100                            |  |
| Space group                              | P 21/n                         |  |
| Unit cell lengths a, b, c (Å)            | 7.460(2), 11.040(2), 13.760(3) |  |
| angles $\alpha$ , $\beta$ , $\gamma$ (°) | 90.00(3), 92.61(3), 90.00(3)   |  |
| Reflections (#)                          | 4682 (678)                     |  |
| Unique reflections (#)                   | 1044 (146)                     |  |
| $R_{\rm obs}$                            | 17.3 (22.1)                    |  |
| R <sub>meas</sub>                        | 19.5 (24.7)                    |  |
| $CC_{1/2}$                               | 97.3 (93.8)                    |  |
| Resolution (Å)                           | 1.0                            |  |
| Completeness (%)                         | 88.3 (84.9)                    |  |
| Total exposure (e' Å-2)                  | ~3                             |  |
| R                                        | 0.1931                         |  |
| wR2                                      | 0.3902                         |  |
| GooF                                     | 2.398                          |  |





Figure S4. Data processing statistics and final structure of carbamazepine.

|                                          | cinchonine                     |
|------------------------------------------|--------------------------------|
| Stoichiometric formula                   | C19 N2 O                       |
| Temperature (K)                          | 100                            |
| Space group                              | <i>P</i> 2 <sub>1</sub> /n     |
| Unit cell lengths a, b, c (Å)            | 10.710(2), 7.060(2), 11.150(2) |
| angles $\alpha$ , $\beta$ , $\gamma$ (°) | 90.00(3), 109.66(3), 90.00(3)  |
| Reflections (#)                          | 1933 (399)                     |
| Unique reflections (#)                   | 1289 (262)                     |
| $R_{ m obs}$                             | 11.0 (14.8)                    |
| R <sub>meas</sub>                        | 15.6 (21.0)                    |
| CC1/2                                    | 95.0 (89.2)                    |
| Resolution (Å)                           | 1.0                            |
| Completeness (%)                         | 77.4 (78.9)                    |
| Total exposure (e° Å-2)                  | ~3                             |
| R                                        | 0.1793                         |
| wR2                                      | 0.3907                         |
| GooF                                     | 1.831                          |





Figure S5. Data processing statistics and final structure of cinchonine.







Figure S6. Data processing statistics and final structure of ethisterone.

| HKL-I-029                                |                               |  |
|------------------------------------------|-------------------------------|--|
| Stoichiometric formula                   | C21 N O3                      |  |
| Temperature (K)                          | 100                           |  |
| Space group                              | P 21/n                        |  |
| Unit cell lengths a, b, c (Å)            | 8.280(2), 24.370(5), 8.810(2) |  |
| angles $\alpha$ , $\beta$ , $\gamma$ (°) | 90.00(3), 108.80(3), 90.00(3) |  |
| Reflections (#)                          | 3369 (446)                    |  |
| Unique reflections (#)                   | 1970 (262)                    |  |
| $R_{\rm obs}$                            | 14.1 (22.8)                   |  |
| R <sub>meas</sub>                        | 18.4 (29.5)                   |  |
| $CC_{1/2}$                               | 94.5 (84.8)                   |  |
| Resolution (Å)                           | 1.0                           |  |
| Completeness (%)                         | 55.3 (55.7)*                  |  |
| Total exposure (e' Å-2)                  | ~3                            |  |
| R                                        | 0.2366                        |  |
| wR2                                      | 0.4762                        |  |
| GooF                                     | 2.656                         |  |





Figure S7. Data processing statistics and final structure of HKL-I-029. \*The completeness of this compound was limited due to preferred orientation.

| ibup                                     | rofen                       |
|------------------------------------------|-----------------------------|
| Stoichiometric formula                   | C13 O2                      |
| Temperature (K)                          | 100                         |
| Space group                              | P 21/c                      |
| Unit cell lengths a, b, c (Å)            | 14.65(3), 7.88(2), 10.73(2) |
| angles $\alpha$ , $\beta$ , $\gamma$ (°) | 90.00(3), 99.7(3), 90.00(3) |
| Reflections (#)                          | 1452 (402)                  |
| Unique reflections (#)                   | 506 (138)                   |
| $R_{\rm obs}$                            | 14.7 (20.8)                 |
| R <sub>meas</sub>                        | 17.8 (25.2)                 |
| $CC_{1/2}$                               | 97.8 (89.9)                 |
| Resolution (Å)                           | 1.1                         |
| Completeness (%)                         | 54.3 (53.1)*                |
| Total exposure (e' Å-2)                  | ~3                          |
| R                                        | 0.2559                      |
| wR2                                      | 0.5282                      |
| GooF                                     | 2.686                       |



Figure S8. Data processing statistics and final structure of ibuprofen. \*The completeness of this compound was limited due to preferred orientation.



Link Link





Figure S9. Data processing statistics and final structure of (+)-limaspermidine.

| prog                                     | esterone                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                        |
|------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Stoichiometric formula                   | C21 O2                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathcal{F}$            |
| Temperature (K)                          | 100                                  | 0.12 Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Space group                              | P 21 21 21                           | ind in the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| Unit cell lengths a, b, c (Å)            | 10.380(2), 12.810(3), 13.890(3)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ſ ŢĤŢĤ                   |
| angles α, β, γ (°)                       | 90.00(3), 90.00(3), 90.00(3)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                        |
| Reflections (#)                          | 4487(577)                            | 2.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| Unique reflections (#)                   | 1871 (238)                           | 104 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| $R_{\rm obs}$                            | 14.7 (44.6)                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
| R <sub>meas</sub>                        | 18.0 (53.9)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| $CC_{1/2}$                               | 98.0 (66.1)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| Resolution (Å)                           | 0.9                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| Completeness (%)                         | 72.1 (68.6)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| Total exposure (e° Å-2)                  | ~3                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| R                                        | 0.2045                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| wR2                                      | 0.4155                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| GooF                                     | 1.888                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
|                                          | tistics and final structure of proge | sterone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| Resolution range (Å)                     | 18.99-1.91 (2.13-1.91)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N^"_                     |
| Space group                              | P 43 21 2                            | int.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s v                      |
| Unit cell lengths a, b, c (Å)            | 26.219, 26.219, 27.534               | A AND |                          |
| angles $\alpha$ , $\beta$ , $\gamma$ (°) | 90, 90, 90                           | 2.00Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| Total reflections                        | 5578 (458)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O N HN' LS N N N N N N N |
| Unique reflections                       | 686 (93)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HOW WHIT NH CONTRACTOR   |
| Multiplicity                             | 8.1 (4.9)                            | SHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ни он                    |
| Completeness (%)                         | 78.6 (40.3)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S. OH OH                 |

#### References

Mean  $I/\sigma(I)$ 

Wilson B-factor

R<sub>merge</sub> R<sub>meas</sub>

 $CC_{1/2}$ 

Reflections used in refinement

 $R_{\rm work}$ 

Rfree

5.1 (3.4)

2.6 0.236 (0.320)

0.251 (0.353)

0.985 (0.813)

620 (92)

0 1818 (0 2191)

0.2396 (0.1766)

Figure S11. Data processing statistics and final structure of thiostrepton.

- Y. Liu, S.-J. Han, W.-B. Liu, B. M. Stoltz, Catalytic Enantioselective Construction of Quaternary Stereocenters: Assembly of Key Building Blocks for the Synthesis of Biologically Active Molecules. *Acc. Chem. Res.* 48, 740–751 (2015).
- 2. B. P. Pritchett, E. J. Donckele, B. M. Stoltz, Enantioselective Catalysis Coupled with Stereodivergent Cyclization Strategies Enables Rapid Syntheses of (+)-Limaspermidine and (+)-Kopsihainanine A. *Angew. Chemie Int. Ed.* **56**, 12624–12627 (2017).
- B. L. Nannenga, D. Shi, A. G. W. Leslie, T. Gonen, High-resolution structure determination by continuous-rotation data collection in MicroED. *Nat. Methods.* 11, 927– 930 (2014).
- 4. W. Kabsch, Xds. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 125–132 (2010).
- 5. W. Kabsch, Integration, scaling, space-group assignment and post-refinement. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **66**, 133–144 (2010).
- 6. G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination.

-

Acta Crystallogr. Sect. A Found. Crystallogr. 71, 3–8 (2015).

- 7. G. M. Sheldrick, Crystal structure refinement with SHELXL. *Acta Crystallogr. Sect. C Struct. Chem.* **71**, 3–8 (2015).
- 8. A. G. W. Leslie, H. R. Powell, (2007; http://link.springer.com/10.1007/978-1-4020-6316-9\_4), pp. 41–51.
- 9. T. G. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell, A. G. W. Leslie, iMOSFLM: A new graphical interface for diffraction-image processing with MOSFLM. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **67**, 271–281 (2011).
- 10. P. R. Evans, G. N. Murshudov, How good are my data and what is the resolution? *Acta Crystallogr. Sect. D Biol. Crystallogr.* **69**, 1204–1214 (2013).
- 11. A. Vagin, A. Teplyakov, MOLREP : an Automated Program for Molecular Replacement. *J. Appl. Crystallogr.* **30**, 1022–1025 (1997).
- 12. G. N. Murshudov *et al.*, REFMAC 5 for the refinement of macromolecular crystal structures. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **67**, 355–367 (2011).