Enantioselective Synthesis of Acyclic α-Quaternary Carboxylic Acid Derivatives via Iridium-Catalyzed Allylic Alkylation

Samantha E. Shockley, [‡] J. Caleb Hethcox, [‡] and Brian M. Stoltz*

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States

Table of Contents

Materials and Methods	S 1
Representative Procedures for the Synthesis of Electrophiles	S3
Spectroscopic Data for the Synthesis of Electrophiles	S4
General Procedure for Optimization of the Ir-Catalyzed Allylic Alkylation	S7
General Procedure for the Enantioenriched Carboxylic Acid Synthesis	S 8
Spectroscopic Data for the Enantioenriched Carboxylic Acids	S9
Determination of Enantiomeric Excess	S15
Experimental Procedures and Spectroscopic Data for the One-Pot Syntheses of Carboxylic Acid Derivatives	S17
Experimental Procedures and Spectroscopic Data for the Product Transformations	S20
Crystal Structure Data for Carboxylic Acid 7h	S22
References	S27
¹ H NMR, ¹³ C NMR, and IR Spectra	S29

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon. Commercially obtained reagents were used as received. Chemicals were purchased from Sigma Aldrich/Strem/Alfa Aesar/Oakwood Chemicals and used as received. Reaction temperatures were controlled by an IKAmag temperature modulator. Glove box manipulations were performed under a nitrogen atmosphere. Thin-layer chromatography (TLC) and preparatory TLC was

performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV fluorescence quenching, KMnO₄, or *p*-anisaldehyde staining. SiliaFlash P60 Academic Silica gel (particle size 0.040–0.063 mm) was used for flash chromatography. Analytical chiral HPLC was performed with an Agilent 1100 Series HPLC utilizing a Chiralpak IC column (4.6 mm x 25 cm) or a Chiralpak AD-H column (4.6 mm x 25 cm), both obtained from Daicel Chemical Industries, Ltd. with visualization at 210 nm. Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system utilizing a Chiralpak AD-H column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. with visualization at 210 nm. Preparatory HPLC was performed with an Agilent 1200 Series HPLC equipped with a Viridis SFC 2-Ethylpyridine 5 um column (4.6 x 250 mm). ¹H NMR spectra were recorded on a Bruker Avance HD 400 MHz spectrometer and are reported relative to residual CHCl₃ (δ 7.26 ppm). ¹³C NMR spectra were recorded on a Bruker Avance HD 400 MHz spectrometer and are reported relative to residual CDCl₃ (δ 77.16 ppm). Data for ¹H NMR are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet. Data for 13 C NMR are reported in terms of chemical shifts (δ ppm). Some reported spectra include minor solvent impurities of benzene (δ 7.36 ppm), water (δ 1.56 ppm), ethyl acetate (δ 4.12, 2.05, 1.26 ppm), methylene chloride (δ 5.30 ppm), grease (δ 1.26, 0.86 ppm), and/or silicon grease (δ 0.07 ppm), which do not impact product assignments. IR spectra were obtained using a Perkin Elmer Paragon 1000 spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm⁻¹). High resolution mass spectra (HRMS) were obtained from the Caltech Mass Spectral Facility using a JEOL JMS-600H High Resolution Mass Spectrometer in fast atom bombardment (FAB+) or electron ionization (EI+) mode, or an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+). Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm pathlength cell and are reported as: $\left[\alpha\right]_{D}^{T}$ (concentration in g/100 mL, solvent).

List of Abbreviations: ee – enantiomeric excess, HPLC – high-performance liquid chromatography, TLC – thin-layer chromatography, EtOAc – ethyl acetate, THF – tetrahydrofuran, MeOH – methanol, Et_2O – diethyl ether, IPA – isopropanol, AcOH – acetic acid, DME – dimethoxyethane, TBD – 1,5,7-triazabicyclo[4.4.0]dec-5-ene, cod – *cis,cis*-1,5-cyclooctadiene, DIBAL – diisobutylaluminium hydride, dppp – 1,3-bis(diphenylphosphino)propane, MAC – masked acyl cyanide, CSA – camphorsulfonic acid

Preparation of Known Compounds: Previously reported methods were used to prepare ligands (S, S_a) -L1¹ and (S_a) -L3² as well as starting materials 1³, 2⁵, 5⁴, 6a⁵, 6b⁶, 6d⁶, 6e⁶, 6j⁶, 6l⁶, 8a⁶, 8d⁶, and 8f⁶.

Representative Procedures for the Synthesis of Electrophiles

*Representative Procedure #1: Oxidative Heck Reaction*⁷

Methyl (*E*)-3-(4-formylphenyl)but-2-enoate (SI-1). To a solution of (4-formylphenyl)boronic acid (0.75 g, 5.0 mmol, 1 equiv), Pd(OAc)₂ (23 mg, 0.10 mmol, 0.02 equiv), dppp (62 mg, 0.15 mmol, 0.03 equiv) in acetone (8 mL) was added methyl crotonate (1.1 mL, 10.0 mmol, 2 equiv) followed by trifluoroacetic acid (0.12 mL, 1.5 mmol, 0.3 equiv). The resulting slurry was heated under reflux for 48 h, whereupon the reaction was cooled to ambient temperature and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (5% EtOAc/hexanes) to give carbonate SI-1 as a colorless oil (0.17 g, 17% yield): ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 1H), 7.97 – 7.78 (m, 2H), 7.74 – 7.58 (m, 2H), 6.22 (q, *J* = 1.3 Hz, 1H), 3.80 (s, 3H), 2.62 (d, *J* = 1.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 167.0, 154.4, 148.2, 136.5, 130.1, 127.1, 119.0, 51.5, 18.1; IR (Neat Film, NaCl) 2950, 2839, 1704, 1631, 1605, 1434, 1349, 1273, 1214, 1171, 1036, 828 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₂H₁₃O₃ [M+H]⁺: 205.0865, found 205.0860.

Representative Procedure #2: Reduction & Acylation

(*E*)-3-(4-Fluorophenyl)but-2-en-1-yl methyl carbonate (6c). To a solution of methyl (*E*)-3-(4-fluorophenyl)but-2-enoate⁸ (0.30 g, 1.6 mmol, 1 equiv) in THF (3.1 mL) at -78 °C was added DIBAL (0.85 mL, 4.8 mmol, 3 equiv) dropwise. The resulting reaction mixture was stirred at -78 °C for 2.5 h, whereupon the reaction was quenched with a saturated aqueous Rochelle's salt solution (5 mL). The cooling bath was then removed and the reaction was stirred for 18 h at ambient temperature. The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL) and the combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, and concentrated under reduced pressure.

The crude material was then dissolved in CH_2Cl_2 (6.4 mL) and cooled to 0 °C. Pyridine (1.1 mL, 13 mmol, 8.3 equiv) was added followed by methyl chloroformate (0.28 mL, 3.7 mmol, 2.3 equiv) dropwise. The resulting solution was allowed to warm to ambient temperature and stirred for 18 h. The reaction was quenched with the addition of 1 M HCl (5 mL) and the aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (5% EtOAc/hexanes) to give carbonate **6c** as a colorless solid (0.14 g,

38% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 2H), 7.05 – 6.96 (m, 2H), 5.87 (tq, J = 7.0, 1.4 Hz, 1H), 4.84 (dd, J = 7.1, 0.8 Hz, 2H), 3.80 (s, 3H), 2.11 (dd, J = 1.4, 0.7 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 163.7, 161.3, 156.0, 140.2, 138.6 (d, J = 3.3 Hz), 127.6 (d, J = 8.0 Hz), 120.7 (d, J = 1.3 Hz), 115.4, 115.1, 65.0, 55.0, 16.5; IR (Neat Film, NaCl) 2961, 1896, 1742, 1649, 1589, 1468, 1442, 1379, 1334, 1252, 1110, 994, 960, 945, 825, 794 cm⁻¹; HRMS (FAB+) m/z calc'd for C₁₂H₁₃FO₃ [M]⁺: 224.0849, found 224.0850.

Spectroscopic Data for the Synthesis of Electrophiles

(*Z*)-methyl (3-phenylbut-2-en-1-yl) carbonate (4). Carbonate 4 was prepared from ethyl (*Z*)-3-phenylbut-2-enoate⁹ according to Representative Procedure #2 and isolated by silica gel flash column chromatography (5% EtOAc/hexanes) as a colorless oil (0.18 g, 49% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.18 (m, 5H), 5.76 – 5.68 (m, 1H), 4.58 (dd, J = 7.2, 1.1 Hz, 2H), 3.79 (s, 3H), 2.13 (q, J = 1.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 143.8, 140.3, 128.4, 127.8, 127.6, 120.5, 65.8, 54.8, 25.6; IR (Neat Film, NaCl) 3023, 2956, 1748, 1494, 1441, 1382, 1350, 1263, 1024, 944, 792, 765, 702 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₂H₁₅O₃ [M+H]⁺: 207.1021, found 207.1011.

(*E*)-3-(4-(((Methoxycarbonyl)oxy)methyl)phenyl)but-2-en-1-yl methyl carbonate (6f). Carbonate 6f was prepared from SI-1 according to Representative Procedure #2 and isolated by silica gel flash column chromatography (5% EtOAc/hexanes) as a colorless solid (0.11 g, 46% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.31 (m, 4H), 5.98 – 5.88 (m, 1H), 5.15 (s, 2H), 4.85 (dd, *J* = 7.0, 0.9 Hz, 2H), 3.802 (s, 3H), 3.795 (s, 3H), 2.13 – 2.10 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 155.9, 142.8, 140.6, 134.7, 128.5, 126.3, 121.2, 69.4, 65.0, 55.1, 55.0, 16.4; IR (Neat Film, NaCl) 2959, 1754, 1443, 1385, 1333, 1288, 958, 909, 794, 731 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₅H₁₈O₆ [M]⁺: 294.1103, found 294.1098.

Methyl (*E***)-3-(3-bromophenyl)but-2-enoate (SI-2).** Ester SI-2 was prepared from (3bromophenyl)boronic acid according to Representative Procedure #1 and isolated by silica gel flash column chromatography (3% EtOAc/hexanes) as a colorless oil (0.54 g, 42% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.59 (m, 1H), 7.51 (ddd, *J* = 7.9, 2.0, 1.0 Hz, 1H), 7.45 – 7.37 (m, 1H), 7.31 – 7.26 (m, 1H), 6.14 (q, *J* = 1.3 Hz, 1H), 3.78 (d, *J* = 1.2 Hz, 3H), 2.57 (d, *J* = 1.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 154.3, 144.4, 132.1, 130.2, 129.6, 125.1, 122.8, 117.9, 51.4, 18.1; IR (Neat Film, NaCl) 3062, 2948, 1719, 1631, 1558, 1435, 1346, 1274, 1191, 1168, 1037, 869, 785, 688 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₁H₁₂O₂Br [M+H]⁺: 255.0021, found 255.0020.

(*E*)-3-(3-Bromophenyl)but-2-en-1-yl methyl carbonate (6g). Carbonate 6g was prepared from SI-2 according to Representative Procedure #2 and isolated by silica gel flash column chromatography (5% EtOAc/hexanes) as a colorless oil (0.47 g, 78% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.54 (t, *J* = 1.8 Hz, 1H), 7.40 (ddd, *J* = 7.9, 1.9, 1.0 Hz, 1H), 7.32 (ddd, *J* = 7.8, 1.8, 1.0 Hz, 1H), 7.22 – 7.14 (m, 1H), 5.96 – 5.88 (m, 1H), 4.88 – 4.76 (m, 2H), 3.81 (s, 3H), 2.12 – 2.08 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.93, 144.65, 139.74, 130.68, 129.96, 129.18, 124.64, 122.65, 122.08, 64.84, 55.02, 16.38; IR (Neat Film, NaCl) 2955, 1748, 1590, 1558, 1442, 1376, 1332, 1263, 946, 789, 690 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₂H₁₃O₃Br [M]⁺: 284.0048, found 284.0073.

(*E*)-Methyl (3-(3-nitrophenyl)but-2-en-1-yl) carbonate (6h). Carbonate 6h was prepared from methyl (*E*)-3-(3-nitrophenyl)but-2-enoate⁸ according to Representative Procedure #2 and isolated by silica gel flash column chromatography (10% EtOAc/hexanes) as a colorless oil (0.47 g, 78% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.26 (t, *J* = 2.0 Hz, 1H), 8.14 (ddd, *J* = 8.2, 2.3, 1.0 Hz, 1H), 7.73 (ddd, *J* = 7.8, 1.8, 1.1 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 6.10 – 5.91 (m, 1H), 4.88 (dt, *J* = 6.9, 0.8 Hz, 2H), 3.82 (s, 3H), 2.18 (dd, *J* = 1.4, 0.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.9, 148.5, 144.1, 138.7, 131.9, 129.4, 123.6, 122.5, 121.0, 64.7, 55.1, 16.4; IR (Neat Film, NaCl) 3108, 3026, 2969, 2868, 1750, 1530, 1443, 1384, 1353, 1279, 1096, 994, 949, 930, 876, 788, 736, 682 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₂H₁₄O₅N [M+H]⁺: 252.0872, found 252.0884.

(*E*)-methyl (3-(Naphthalen-2-yl)but-2-en-1-yl) carbonate (6i). Carbonate 6i was prepared from methyl (*E*)-3-(naphthalen-2-yl)but-2-enoate¹⁰ according to Representative Procedure #2 and isolated by silica gel flash column chromatography (5% EtOAc/hexanes) as a colorless oil (0.26 g, 51% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.77 (m, 4H), 7.58 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.52 – 7.42 (m, 2H), 6.12 – 6.05 (m, 1H), 4.92 (dq, *J* = 7.0, 0.7 Hz, 2H), 3.82 (s, 3H), 2.29 – 2.22 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 140.9, 139.7, 133.4, 133.0, 128.3, 128.0, 127.7, 126.4, 126.1, 124.9, 124.3, 121.3, 65.2, 55.0, 16.5; IR (Neat Film, NaCl) 3057, 2952, 1752, 1740, 1596, 1467, 1442, 1382, 1248, 997, 941, 818, 794, 740 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₆H₁₆O₃ [M]⁺: 256.1100, found 256.1095.

(*E*)-3-(3,5-Dimethylphenyl)but-2-en-1-yl methyl carbonate (6k). Carbonate 6k was prepared from methyl (*E*)-3-(3,5-dimethylphenyl)but-2-enoate¹¹ according to Representative Procedure #2 and isolated by silica gel flash column chromatography (5% EtOAc/hexanes) as a colorless oil (0.32 g, 86% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.02 (dt, *J* = 1.6, 0.8 Hz, 2H), 6.93 (td, *J* = 1.6, 0.8 Hz, 1H), 5.96 – 5.82 (m, 1H), 4.84 (dd, *J* = 7.0, 0.8 Hz, 2H), 3.80 (s, 3H), 2.31 (d, *J* = 0.7 Hz, 6H), 2.15 – 2.06 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 142.6, 141.5, 137.9, 129.4, 123.9, 120.4, 65.1, 54.9, 21.5, 16.5; IR (Neat Film, NaCl) 2956, 2918, 2862, 1748, 1601, 1443, 1376, 1335, 1262, 944, 905, 849, 792, 699 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₄H₁₈O₃ [M]⁺: 234.1256, found 234.1252.

(*E*)-Methyl (3-phenylhept-2-en-1-yl) carbonate (8b). Carbonate 8b was prepared from ethyl (*E*)-3-phenylhept-2-enoate¹² according to Representative Procedure #2 and isolated by silica gel flash column chromatography (5% EtOAc/hexanes) as a colorless oil (0.31 g, 58% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.27 (m, 5H), 5.89 – 5.71 (m, 1H), 4.84 (d, *J* = 7.0 Hz, 2H), 3.80 (s, 3H), 2.73 – 2.46 (m, 2H), 1.41 – 1.24 (m, 4H), 1.06 – 0.73 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 146.6, 142.0, 128.4, 127.6, 126.6, 121.1, 65.0, 55.0, 31.2, 30.2, 22.7, 14.0; IR (Neat Film, NaCl) 3034, 2957, 2872, 1748, 1644, 1599,

1493, 1444, 1378, 1344, 1262, 1129, 941, 792, 766, 698 cm⁻¹; HRMS (FAB+) m/z calc'd for C₁₅H₂₀O₃ [M]⁺: 248.1412, found 248.1424.

(*E*)-Methyl (4-methyl-3-phenylpent-2-en-1-yl) carbonate (8c). Carbonate 8c was prepared from ethyl (*E*)-4-methyl-3-phenylpent-2-enoate¹³ according to Representative Procedure #2 and isolated by silica gel flash column chromatography (5% EtOAc/hexanes) as a colorless oil (0.17 g, 17% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 3H), 7.11 – 7.02 (m, 2H), 5.61 (td, *J* = 7.0, 1.3 Hz, 1H), 4.46 (dd, *J* = 7.0, 0.8 Hz, 2H), 3.75 (s, 3H), 2.66 – 2.54 (m, 1H), 1.03 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 154.0, 139.7, 128.5, 128.2, 127.3, 117.8, 66.1, 54.8, 36.0, 21.5; IR (Neat Film, NaCl) 2961, 2872, 1749, 1492, 1442, 1263, 942, 792, 771, 703 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₄H₁₉O₃ [M+H]⁺: 235.1334, found 235.1344.

(*E*)-3-(Cyclohex-1-en-1-yl)but-2-en-1-yl methyl carbonate (8e). Carbonate 8e was prepared from ethyl (*E*)-3-(cyclohex-1-en-1-yl)but-2-enoate¹⁴ according to Representative Procedure #2 and isolated by silica gel flash column chromatography (5% EtOAc/hexanes) as a colorless oil (0.25 g, 73% yield): ¹H NMR (400 MHz, CDCl₃) δ 6.00 – 5.92 (m, 1H), 5.68 – 5.55 (m, 1H), 4.79 (d, *J* = 7.0 Hz, 2H), 3.78 (s, 3H), 2.16 (ddd, *J* = 12.0, 5.9, 3.7 Hz, 4H), 1.85 (d, *J* = 1.1 Hz, 3H), 1.73 – 1.49 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 141.2, 137.0, 126.0, 116.8, 65.5, 54.9, 26.1, 25.8, 23.0, 22.3, 14.1; IR (Neat Film, NaCl) 2929, 2859, 1749, 1638, 1443, 1263, 1119, 940, 792 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₂H₁₈O₃ [M]⁺: 210.1256, found 210.1252.

General Procedure for Optimization of the Ir-Catalyzed Allylic Alkylation (Table 1)

(*S*)-2-(Methoxymethoxy)-2-(2-phenylbut-3-en-2-yl)malononitrile (3). In a nitrogenfilled glove box, to a 1 dram vial (vial A) equipped with a stir bar was added $[Ir(cod)Cl]_2$ (1.3 mg, 0.0020 mmol, 2 mol %), ligand (*S_a*)-L3 (2.5 mg, 0.0042 mmol, 4.2 mol %), TBD (1.4 mg, 0.010 mmol, 10 mol %), and THF (0.5 mL). Vial A was stirred at 25 °C (ca. 10 min) while another 1 dram vial (vial B) was charged with MAC nucleophile 1 (0.10 mmol or 0.20 mmol, as specified), THF (0.5 mL), and the Lewis acid additive (200 mol %). The

pre-formed catalyst solution (vial A) was then transferred to vial B followed immediately by carbonate 2 (0.20 mmol, 0.10 mmol, or 0.12 mmol, as specified). The vial was sealed and stirred at 60 °C. After 18 h, the vial was removed from the glove box and filtered through a pad of silica, rinsing with EtOAc. The crude mixture was concentrated and 1,2,4,5-tetrachloro-3-nitrobenzene (0.10 mmol in 0.5 mL CDCl₃) was added. The NMR yield (measured in reference to 1,2,4,5-tetrachloro-3-nitrobenzene δ 7.74 ppm (s, 1H)) was determined by ¹H NMR analysis of the crude mixture. The residue was purified by preparatory TLC (15% EtOAc/hexanes) to afford MAC adduct product 3 as a colorless oil. For the purposes of characterization, product **3** was further purified by preparatory HPLC (20% EtOAc/hexanes, Viridis SFC 2-Ethylpyridine 5 µm column, flow rate = 1.5 mL/min; $\lambda = 230 \text{ nm}$): 94% ee (entry 9); $[\alpha]_D^{25} + 11.7$ (c 0.07, CHCl₃) (entry 9); ¹H NMR (400 MHz, $CDCl_3$) δ 7.61 – 7.54 (m, 2H), 7.42 – 7.32 (m, 3H), 6.51 (dd, J = 17.4, 11.0 Hz, 1H), 5.59-5.34 (m, 2H), 5.02 (s, 2H), 3.42 (s, 3H), 1.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 137.6, 129.0, 128.57, 238.55, 128.3, 125.2, 119.2, 112.8, 112.7, 96.7, 73.9, 57.5, 52.8, 20.9; IR (Neat Film, NaCl) 3062, 2957, 2896, 2242, 2189, 1750, 1492, 1445, 1358, 1268, 1161, 1108, 1030, 930, 751, 698 cm⁻¹; HRMS (ESI+) m/z calc'd for C₁₅H₁₇N₂O₂ [M+H]⁺: 257.1290, found 257.1313; HPLC conditions: 1% IPA, 1.0 mL/min, Chiralpak IC column, $\lambda = 210$ nm, t_R (min): major = 13.303, minor = 17.243.

General Procedure for the Enantioenriched Carboxylic Acid Synthesis

<u>Please note</u> that the absolute configuration was determined only for compound **7h** via x-ray crystallographic analysis. The absolute configuration for all other products has been inferred by analogy. For respective HPLC and SFC conditions, please refer to Table S1.

(*S*)-2-Methyl-2-phenylbut-3-enoic acid (7a). In a nitrogen-filled glove box, to a 1 dram vial (vial A) equipped with a stir bar was added [Ir(cod)Cl]₂ (2.7 mg, 0.0040 mmol, 2 mol %), ligand (S_a)-L3 (4.9 mg, 0.0084 mmol, 4.2 mol %), TBD (2.8 mg, 0.020 mmol, 10 mol %), and THF (1 mL). Vial A was stirred at 25 °C (ca. 10 min) while another 1 dram vial (vial B) was charged with MAC nucleophile 1 (25 mg, 0.20 mmol, 100 mol %), THF (1 mL), and BEt₃ (400 µL, 1M in hexanes). The pre-formed catalyst solution (vial A) was then transferred to vial B followed immediately by carbonate 2 (83 mg, 0.40 mmol, 200 mol %). The vial was sealed and stirred at 60 °C. After 18 h or 48 h, the vial was removed from the glove box, transferred to a 20 mL vial with CH₂Cl₂, and concentrated. The crude material was heated at 80 °C in 6M HCl (4 mL) for 18 h. Whereupon, the reaction mixture was cooled to 0 °C and basified with 6M NaOH (4.5 mL). The aqueous layer was extracted with CH₂Cl₂ (4 x 8 mL). The combined organic layers were washed with 2M NaOH (8 mL). The combined aqueous layers were acidified with concentrated HCl, extracted with CH₂Cl₂ (4 x 8 mL), dried over Na₂SO₄, and concentrated under reduced pressure at 0 °C to give the product 7a as a colorless solid (27 mg, 77% yield): 95% ee; $[\alpha]_D^{25} +13.5$ (*c* 1.3,

CHCl₃); HPLC conditions: 2% IPA, 1.0 mL/min, Chiralpak AD–H column, $\lambda = 210$ nm, t_R (min): major = 12.198, minor = 11.426. Characterization data match those reported in the literature.¹⁵ <u>*Please note*</u> Compounds **7i**, **7j**, **7k**, and **9a–9g** were prepared at the same concentration with double catalyst loadings.

Spectroscopic Data for the Enantioenriched Carboxylic Acids

(*S*)-2-(4-Chlorophenyl)-2-methylbut-3-enoic acid (7b). Product 7b was prepared according to the general procedure to give a pale yellow oil (33 mg, 80% yield): 93% ee; $[\alpha]_D^{25}$ +8.1 (*c* 1.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.24 (m, 4H), 6.38 (dd, *J* = 17.5, 10.7 Hz, 1H), 5.44 – 5.16 (m, 2H), 1.66 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.4, 141.1, 140.1, 133.3, 128.7, 128.3, 116.1, 53.3, 23.3; IR (Neat Film, NaCl) 3089, 2987, 2645, 2539, 1705, 1493, 1400, 1282, 1097, 1014, 928, 826, 755 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₁H₁₂O₂Cl [M+H]⁺: 211.0526, found 211.0528; HPLC conditions: 2% IPA, 1.0 mL/min, Chiralpak AD–H column, λ = 210 nm, t_R (min): major = 15.642, minor = 14.104.

(*S*)-2-(4-Fluorophenyl)-2-methylbut-3-enoic acid (7c). Product 7c was prepared according to the general procedure to give a pale yellow oil (35 mg, 90% yield): 90% ee; $[\alpha]_D^{25}$ +3.4 (*c* 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.19 (m, 2H), 7.05 (t, *J* = 8.7 Hz, 2H), 6.39 (dd, *J* = 17.5, 10.7 Hz, 1H), 5.42 – 5.14 (m, 2H), 1.67 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.6, 163.2, 160.7, 140.4, 138.3 (d, *J* = 3.4 Hz), 128.5 (d, *J* = 8.1 Hz), 115.9, 115.5, 115.3, 53.2, 23.5; IR (Neat Film, NaCl) 3088, 2987, 2924, 2642, 1704, 1603, 1510, 1462, 1412, 1277, 1234, 1165, 928, 833, 816, 735 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₁H₁₂FO₂ [M+H]⁺: 195.0833, found 195.0841; HPLC conditions: 2% IPA, 1.0 mL/min, Chiralpak AD–H column, λ = 210 nm, t_R (min): major = 15.499, minor = 13.811.

(*S*)-2-Methyl-2-(4-(trifluoromethyl)phenyl)but-3-enoic acid (7d). Product 7d was prepared according to the general procedure to give a pale yellow oil (41 mg, 83% yield): 92% ee; $[α]_D^{25}$ -2.2 (*c* 2.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dt, *J* = 8.1, 0.8 Hz, 2H), 7.45 (dt, *J* = 8.3, 0.8 Hz, 2H), 6.38 (dd, *J* = 17.5, 10.7 Hz, 1H), 5.48 – 5.09 (m, 2H), 1.68 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.0, 146.6, 139.7, 129.6, 130.0, 129.5, 127.2, 125.6 (q, *J* = 3.7 Hz), 122.8, 116.6, 53.7, 29.9, 23.4; IR (Neat Film, NaCl) 2926, 2649, 1707, 1618, 1413, 1328, 1277, 1167, 1126, 1081, 1016, 930, 940 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₂H₁₂O₂F₃ [M+H]⁺: 245.0789, found 245.0794; SFC conditions: 2% IPA, 2.5 mL/min, Chiralpak AD–H column, λ = 210 nm, t_R (min): major = 13.592, minor = 15.745.

(*S*)-2-Methyl-2-(*p*-tolyl)but-3-enoic acid (7e). Product 7e was prepared according to the general procedure to give a pale yellow oil (24 mg, 63% yield): 94% ee; $[\alpha]_D^{25}$ +4.6 (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.01 (m, 4H), 6.40 (dd, *J* = 17.5, 10.7 Hz, 1H), 5.59 – 5.08 (m, 2H), 2.34 (s, 3H), 1.64 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 181.0, 140.7, 139.8, 137.0, 129.3, 126.6, 115.4, 53.3, 23.3, 21.1; IR (Neat Film, NaCl) 2986, 1702, 1636, 1512, 1457, 1412, 1276, 1191, 1132, 1077, 1020, 925, 815, 730 cm⁻¹; HRMS (ESI-) *m/z* calc'd for C₁₂H₁₃O₂ [M-H]⁻: 189.0916, found 189.0903; HPLC conditions: 2% IPA, 1.0 mL/min, Chiralpak AD–H column, λ = 210 nm, t_R (min): major = 15.393, minor = 14.288.

(*S*)-2-(4-(Hydroxymethyl)phenyl)-2-methylbut-3-enoic acid (7f). Product 7f was prepared according to the general procedure and isolated by preparatory TLC (30% acetone/hexanes) to give a colorless soild (21 mg, 51% yield): 95% ee; $[\alpha]_D^{25}$ +3.4 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (q, *J* = 8.2 Hz, 4H), 6.37 (dd, *J* = 17.5, 10.7 Hz, 1H), 5.39 – 5.10 (m, 2H), 4.57 (s, 2H), 1.63 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ

180.1, 143.2, 140.4, 136.4, 128.8, 127.2, 115.8, 53.6, 45.9, 23.4; IR (Neat Film, NaCl) 2985, 2927, 2642, 1703, 1636, 1512, 1460, 1268, 1182, 1076, 926, 836, 731, 683 cm⁻¹; HRMS (FAB+) *m*/*z* calc'd for C₁₂H₁₅O₃ [M+H]⁺: 207.1021, found 207.1025; HPLC conditions: 2% IPA, 1.0 mL/min, Chiralpak AD–H column, $\lambda = 210$ nm, t_R (min): major = 15.258, minor = 14.667.

(*S*)-2-(3-Bromophenyl)-2-methylbut-3-enoic acid (7g). Product 7g was prepared according to the general procedure to give a pale yellow oil (35 mg, 69% yield): 92% ee; $[\alpha]_D^{25}$ –2.6 (*c* 1.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (t, *J* = 1.9 Hz, 1H), 7.41 (ddd, *J* = 7.6, 1.9, 1.2 Hz, 1H), 7.29 – 7.18 (m, 2H), 6.35 (dd, *J* = 17.5, 10.7 Hz, 1H), 5.42 – 5.09 (m, 2H), 1.65 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.7, 145.0, 139.8, 130.5, 130.2, 129.9, 125.5, 122.8, 116.4, 53.5, 23.3; IR (Neat Film, NaCl) 2987, 2644, 1705, 1593, 1566, 1475, 1413, 1280, 1129, 1070, 997, 928, 785, 760, 700 cm⁻¹; HRMS (ESI-) *m/z* calc'd for C₁₁H₁₀O₂Br [M-H]⁻: 252.9864, found 252.9864; HPLC conditions: 2% IPA, 1.0 mL/min, Chiralpak AD–H column, λ = 210 nm, t_R (min): major = 15.217, minor = 14.439.

(*S*)-2-Methyl-2-(3-nitrophenyl)but-3-enoic acid (7h). Product 7h was prepared according to the general procedure to give a colorless solid (41 mg, 93% yield): 87% ee; $[\alpha]_D^{25}$ +94.5 (*c* 3.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (t, *J* = 2.0 Hz, 1H), 8.15 (ddd, *J* = 8.2, 2.2, 1.0 Hz, 1H), 7.69 (ddd, *J* = 7.9, 1.9, 1.1 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 1H), 6.38 (dd, *J* = 17.5, 10.7 Hz, 1H), 5.59 – 5.11 (m, 2H), 1.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 179.6, 148.5, 144.7, 139.2, 133.3, 129.6, 122.5, 122.1, 117.2, 53.7, 23.4; IR (Neat Film, NaCl) 3089, 2988, 2924, 2641, 1707, 1530, 1351, 1276, 1106, 929, 808, 738, 688 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₁H₁₂O₄N [M+H]⁺: 222.0766, found 222.0769; HPLC conditions: 3% IPA, 1.0 mL/min, Chiralpak AD–H column, λ = 210 nm, t_R (min): major = 24.060, minor = 20.907.

(*S*)-2-Methyl-2-(naphthalen-2-yl)but-3-enoic acid (7i). Product 7i was prepared according to the general procedure to give a pale yellow oil (30 mg, 66% yield): 92% ee; $[\alpha]_D^{25}$ +7.8 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.72 (m, 4H), 7.55 – 7.39 (m, 3H), 6.52 (dd, *J* = 17.5, 10.7 Hz, 1H), 5.57 – 5.11 (m, 2H), 1.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.9, 140.5, 140.0, 133.3, 132.5, 128.3, 128.2, 127.6, 126.3, 126.2, 125.3, 125.2, 116.0, 53.9, 23.4; IR (Neat Film, NaCl) 3057, 2984, 1701, 1506, 1458, 1411, 1274, 1182, 1128, 1102, 925, 856, 816, 747 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₅H₁₄O₂ [M]⁺: 226.0994, found 226.0992; HPLC conditions: 2% IPA, 1.0 mL/min, Chiralpak AD–H column, λ = 210 nm, t_R (min): major = 28.272, minor = 24.870.

(*S*)-2-Methyl-2-(*m*-tolyl)but-3-enoic acid (7j). Product 7j was prepared according to the general procedure to give a pale yellow oil (26 mg, 68% yield): 93% ee; $[\alpha]_D^{25}$ +5.2 (*c* 1.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.04 (m, 4H), 6.40 (dd, *J* = 17.5, 10.7 Hz, 1H), 5.45 – 5.08 (m, 2H), 2.44 – 2.20 (m, 3H), 1.65 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 142.7, 140.6, 138.3, 128.5, 128.1, 127.3, 123.7, 115.6, 53.6, 23.3, 21.7; IR (Neat Film, NaCl) 2984, 2923, 2648, 1703, 1606, 1459, 1411, 1275, 1178, 1127, 1002, 926, 785, 703 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₂H₁₅O₂ [M+H]⁺: 191.1072, found 191.1074; HPLC conditions: 2% IPA, 1.0 mL/min, Chiralpak AD–H column, λ = 210 nm, t_R (min): major = 13.800, minor = 12.388.

(*S*)-2-(3,5-Dimethylphenyl)-2-methylbut-3-enoic acid (7k). Product 7k was prepared according to the general procedure and isolated by preparatory TLC (30% acetone/hexanes) to give a colorless oil (13 mg, 32% yield): 85% ee; $[\alpha]_D^{25}$ -40.6 (*c* 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.94 (d, *J* = 8.5 Hz, 3H), 6.42 (dd, *J* = 17.4, 10.6 Hz, 1H), 5.45 – 5.08 (m, 2H), 2.33 (s, 6H), 1.65 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 180.5, 142.8, 140.8, 138.1, 129.0, 124.4, 115.3, 53.6, 23.3, 21.6; IR (Neat Film, NaCl) 2983, 2919, 2639, 1700, 1602, 1411, 1279, 1125, 923, 848, 708 cm⁻¹; HRMS (FAB+) *m/z*

calc'd for C₁₃H₁₇O₂ [M+H]⁺: 205.1229, found 205.1233; HPLC conditions: 2% IPA, 1.0 mL/min, Chiralpak AD–H column, $\lambda = 210$ nm, t_R (min): major = 11.107, minor = 10.064. <u>*Please note*</u> an HMBC has been included due to the low intensity of the carbonyl ¹³C shift at δ 180.5.

(*S*)-2-Ethyl-2-phenylbut-3-enoic acid (9a). Product 9a was prepared according to the general procedure and isolated by preparatory TLC (30% acetone/hexanes) to give a a colorless oil (23 mg, 61% yield): 92% ee; $[\alpha]_D^{25}$ +17.4 (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.22 (m, 5H), 6.36 (dd, *J* = 17.7, 10.9 Hz, 1H), 5.35 (d, *J* = 10.7 Hz, 1H), 5.09 (d, *J* = 17.6 Hz, 1H), 2.36 – 2.00 (m, 2H), 0.87 (t, *J* = 7.2 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 141.3, 139.1, 128.4, 127.6, 127.2, 116.9, 58.0, 29.4, 9.4; IR (Neat Film, NaCl) 3060, 2970, 2928, 2636, 1702, 1495, 1448, 1407, 1381, 1261, 1083, 924, 761, 700 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₂H₁₅O₂ [M+H]⁺: 191.1072, found 191.1071; HPLC conditions: 1.5% IPA, 1.0 mL/min, two Chiralpak AD–H columns in series, λ = 210 nm, t_R (min): major = 46.253, minor = 47.271.

(*S*)-2-Phenyl-2-vinylhexanoic acid (9b). Product 9b was prepared according to the general procedure and isolated by preparatory TLC (30% acetone/hexanes) to give a colorless oil (6 mg, 14% yield): 95% ee; $[\alpha]_D^{25}$ –106.0 (*c* 0.07, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 5H), 6.38 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.32 (dd, *J* = 10.9, 0.9 Hz, 1H), 5.06 (dd, *J* = 17.6, 0.9 Hz, 1H), 2.28 – 1.98 (m, 2H), 1.44 – 1.14 (m, 4H), 0.87 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 178.4, 141.6, 139.7, 128.4, 127.5, 127.1, 116.6, 57.5, 36.5, 27.0, 23.4, 14.1; IR (Neat Film, NaCl) 2956, 2920, 2851, 1734, 1706, 1466, 1378, 1260, 1098, 925, 800, 722, 700 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₄H₁₉O₂ [M+H]⁺: 219.1385, found 219.1291; SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak AD–H column, $\lambda = 210$ nm, t_R (min): major = 10.646, minor = 11.952.

(*R*)-2-Methyl-2-phenethylbut-3-enoic acid (9f). Product 9f was prepared according to the general procedure and isolated by preparatory TLC (33% acetone/hexanes) to give a colorless oil (13 mg, 32% yield): 3% ee; $[\alpha]_D^{25}$ -12.1 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.04 (m, 5H), 6.10 (dd, *J* = 17.6, 10.7 Hz, 1H), 5.21 (dd, *J* = 14.0, 3.3 Hz, 2H), 2.60 (dt, *J* = 11.0, 4.9 Hz, 2H), 2.33 – 1.79 (m, 2H), 1.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 182.0, 142.0, 140.9, 128.54, 128.49, 126.1, 114.7, 48.7, 41.1, 31.2, 20.7; IR (Neat Film, NaCl) 3026, 2927, 1702, 1496, 1454, 1380, 1264, 1097, 925, 748, 700 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₃H₁₇O₂ [M+H]⁺: 267.1385, found 267.1376; HPLC conditions: 2% IPA, 1.0 mL/min, Chiralpak AD–H column, λ = 210 nm, t_R (min): major = 18.485, minor = 14.652. *Please note* an HMBC has been included due to the low intensity of the carbonyl ¹³C shift at δ 182.0.

2,2-Dimethylbut-3-enoic acid (9g). Product **9g** was prepared according to the general procedure to give a colorless oil (15 mg, 63% yield). Characterization data match those reported in the literature.¹⁶

Determination of Enantiomeric Excess

<u>Please note</u> racemic products were synthesized using racemic L3.

Table S1: Determination of Enantiomeric Excess

Entry	Product	Assay Conditions	Retention time of major isomer (min)	Retention time of minor isomer (min)	%ee
1		HPLC Chiralpak IC 1% IPA isocratic, 1 mL/min	13.303	17.243	94%
2	HO	HPLC Chiralpak AD–H 2% IPA isocratic, 1 mL/min	12.198	11.426	95%
3		HPLC Chiralpak AD–H 2% IPA isocratic, 1 mL/min	15.642	14.104	93%
4	HO F	HPLC Chiralpak AD–H 2% IPA isocratic, 1 mL/min	15.499	13.811	90%
5	HO F ₃ C	SFC Chiralpak AD–H 2% IPA isocratic, 2.5 mL/min	13.592	15.745	92%
6	HO	HPLC Chiralpak AD–H 2% IPA isocratic, 1 mL/min	15.393	14.288	94%

Entry	Product	Assay Conditions	Retention time of major isomer (min)	Retention time of minor isomer (min)	%ee
7	но	HPLC Chiralpak AD–H 2% IPA isocratic, 1 mL/min	15.258	14.667	95%
8	HO Br	HPLC Chiralpak AD–H 2% IPA isocratic, 1 mL/min	15.217	14.439	92%
9		HPLC Chiralpak AD–H 3% IPA isocratic, 1 mL/min	24.060	20.907	87%
10	HO	HPLC Chiralpak AD–H 2% IPA isocratic, 1 mL/min	28.272	24.870	92%
11	но	HPLC Chiralpak AD–H 2% IPA isocratic, 1 mL/min	13.800	12.388	93%
12	но	HPLC Chiralpak AD–H 2% IPA isocratic, 1 mL/min	11.107	10.064	85%
13	HO	HPLC two Chiralpak AD–H in series 1.5% IPA isocratic, 1 mL/min	46.253	47.271	92%

Entry	Product	Assay Conditions	Retention time of major isomer (min)	Retention time of minor isomer (min)	%ее
14	но п-ви	SFC Chiralpak AD–H 5% IPA isocratic, 2.5 mL/min	10.646	11.952	95%
15	HOPh	HPLC Chiralpak AD–H 2% IPA isocratic, 1 mL/min	18.485	14.652	3%

Experimental Procedures and Spectroscopic Data for the One-pot Syntheses of Carboxylic Acid Derivatives

Methyl (S)-2-(4-chlorophenyl)-2-methylbut-3-enoate (10). In a nitrogen-filled glove box, to a scintillation vial (vial A) equipped with a stir bar was added $[Ir(cod)Cl]_2$ (13 mg, 0.02 mmol, 2 mol %), ligand (S_a)-L3 (25 mg, 0.042 mmol, 4.2 mol %), TBD (14 mg, 0.10 mmol, 10 mol %), and THF (5 mL). Vial A was stirred at 25 °C (ca. 10 min) while another scintillation vial (vial B) was charged with MAC nucleophile 1 (126 mg, 1.0 mmol, 100 mol %), THF (5 mL), and BEt₃ (2.0 mL, 1M in hexanes). The pre-formed catalyst solution (vial A) was then transferred to vial B followed immediately by carbonate **6b** (480 mg, 2.0 mmol, 200 mol %). The vial was sealed and stirred at 60 °C. After 18 h, the vial was removed from the glove box and the reaction mixture was concentrated under reduced pressure.

To the vial of crude MAC adduct equipped with a stir bar and septum cap was added 1:1 AcOH/DME (2 mL, 0.5 M) and CSA (0.26 g, 1.1 mmol, 1.1 equiv) under a nitrogen atmosphere. The reaction was heated to 60 °C for 6 h, whereupon the reaction mixture was cooled to ambient temperature, diluted with anhydrous MeOH (2.8 mL), and cooled to -40 °C. A solution of 1:1 MeOH/Et₃N (5.6 mL, 20.1 equiv of Et₃N) was added dropwise over 10 min. The reaction mixture was allowed to warm to ambient temperature over 18 h, whereupon the reaction was slowly quenched with saturated NH₄Cl aqueous solution (5 mL). The aqueous layer was then extracted with CH₂Cl₂ (3 x 10 mL) and the combined

organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure at 0 °C. The crude residue was purified by silica gel flash column chromatography (10% EtOAc/hexanes) to give methyl ester **10** as a colorless oil (0.20 g, 88% yield): $[\alpha]_D^{25}$ +1.5 (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 6.99 (m, 4H), 6.35 (dd, *J* = 17.5, 10.7 Hz, 1H), 5.48 – 5.00 (m, 2H), 3.70 (s, 3H), 1.62 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 142.0, 140.6, 132.9, 128.7, 128.1, 115.6, 53.5, 52.7, 23.7; IR (Neat Film, NaCl) 2986, 2952, 1734, 1637, 1493, 1459, 1246, 1181, 1123, 1098, 1014, 926, 828, 757 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₂H₁₃ClO₂ [M+]⁺: 224.0604, found 224.0621.

Allyl (*S*)-2-(4-chlorophenyl)-2-methylbut-3-enoate (11). In a nitrogen-filled glove box, to a 1 dram vial (vial A) equipped with a stir bar was added $[Ir(cod)Cl]_2$ (2.7 mg, 0.0040 mmol, 2 mol %), ligand (*S_a*)-L3 (4.9 mg, 0.0084 mmol, 4.2 mol %), TBD (2.8 mg, 0.020 mmol, 10 mol %), and THF (1 mL). Vial A was stirred at 25 °C (ca. 10 min) while another 1 dram vial (vial B) was charged with MAC nucleophile 1 (25 mg, 0.20 mmol, 100 mol %), THF (1 mL), and BEt₃ (400 µL, 1M in hexanes). The pre-formed catalyst solution (vial A) was then transferred to vial B followed immediately by carbonate **6b** (96 mg, 0.40 mmol, 200 mol %). The vial was sealed and stirred at 60 °C. After 18 h, the vial was removed from the glove box, transferred to a 20 mL vial with CH₂Cl₂ and concentrated.

To the vial of crude MAC adduct equipped with a stir bar and septum cap was added 1:1 AcOH/DME (0.4 mL, 0.5 M) and CSA (51 mg, 0.22 mmol, 1.1 equiv) under a nitrogen atmosphere. The reaction was heated to 60 °C for 6 h, whereupon the reaction mixture was cooled to ambient temperature, diluted with allyl alcohol (0.4 mL), and cooled to 0 °C. A solution of 1:1 Et₃N/allyl alcohol (1.1 mL, 20.4 equiv of Et₃N) was added dropwise over 10 min. The reaction mixture was allowed to warm to ambient temperature over 18 h, whereupon the reaction was slowly quenched with saturated NH_4Cl aqueous solution (5) mL). The aqueous layer was then extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure at 0 °C. The crude residue was purified by preparatory TLC (8% EtOAc/hexanes) to give allyl ester 11 as a colorless oil (37 mg, 74% yield): $\left[\alpha\right]_{D}^{25} + 0.4$ (c 2.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.12 (m, 4H), 6.36 (dd, J = 17.5, 10.7) Hz, 1H), 5.85 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.38 – 5.02 (m, 4H), 4.61 (dt, J = 5.6, 1.4 Hz, 2H), 1.63 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 142.0, 140.6, 132.9, 131.9, 128.6, 128.1, 118.5, 115.6, 65.9, 53.5, 23.6; IR (Neat Film, NaCl) 3089, 2985, 2930, 2857, 1900, 1734, 1638, 1493, 1236, 1177, 1122, 1097, 1014, 926, 828, 756 cm⁻¹; HRMS (FAB+) m/z calc'd for C₁₄H₁₆O₂Cl [M+H]⁺: 251.0839, found 251.0842.

(*S*)-2-(4-Chlorophenyl)-2-methyl-1-(pyrrolidin-1-yl)but-3-en-1-one (12). In a nitrogenfilled glove box, to a 1 dram vial (vial A) equipped with a stir bar was added [Ir(cod)Cl]₂ (2.7 mg, 0.0040 mmol, 2 mol %), ligand (S_a)-L3 (4.9 mg, 0.0084 mmol, 4.2 mol %), TBD (2.8 mg, 0.020 mmol, 10 mol %), and THF (1 mL). Vial A was stirred at 25 °C (ca. 10 min) while another 1 dram vial (vial B) was charged with MAC nucleophile 1 (25 mg, 0.20 mmol, 100 mol %), THF (1 mL), and BEt₃ (400 µL, 1M in hexanes). The pre-formed catalyst solution (vial A) was then transferred to vial B followed immediately by carbonate **6b** (96 mg, 0.40 mmol, 200 mol %). The vial was sealed and stirred at 60 °C. After 18 h, the vial was removed from the glove box, transferred to a 20 mL vial with CH₂Cl₂, and concentrated.

To the vial of crude MAC adduct equipped with a stir bar and septum cap was added 1:1 AcOH/DME (0.4 mL, 0.5 M) and CSA (51 mg, 0.22 mmol, 1.1 equiv) under a nitrogen atmosphere. The reaction was heated to 60 °C for 6 h, whereupon the reaction mixture was cooled to ambient temperature, diluted with CH₂Cl₂ (0.4 mL), and cooled to -40 °C. A solution of 1:1 pyrrolidine/CH₂Cl₂ (0.67 mL, 20.4 equiv of pyrrolidine) was added dropwise over 10 min then Et₃N (0.57 mL, 4.1 mmol, 20.4 equiv). The reaction mixture was allowed to warm to ambient temperature over 18 h, whereupon the reaction was slowly quenched with saturated NH₄Cl aqueous solution (5 mL). The aqueous layer was then extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure at 0 °C. The crude residue was purified by preparatory TLC (30% acetone/hexanes) to give amide 12 as a colorless oil (32 mg, 61% yield): $[\alpha]_D^{25}$ -49.5 (c 1.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 2H), 7.21 – 7.14 (m, 2H), 6.45 (dd, *J* = 17.4, 10.7 Hz, 1H), 5.27 (dd, J = 10.7, 0.8 Hz, 1H), 5.10 (dd, J = 17.4, 0.8 Hz, 1H), 3.63 - 3.47 (m, 2H), 2.98 (dt, J)= 10.6, 6.3 Hz, 1H), 2.52 (dt, J = 10.6, 6.7 Hz, 1H), 1.78 – 1.62 (m, 2H), 1.64 – 1.55 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 143.2, 139.7, 132.5, 129.0, 127.6, 115.5, 54.3, 47.52, 47.44, 28.4, 26.5, 23.5; IR (Neat Film, NaCl) 2928, 2873, 1742, 1627, 1491, 1396, 1228, 1185, 1096, 1012, 921, 829, 723 cm⁻¹; HRMS (FAB+) m/z calc'd for C₁₅H₁₉ClNO [M+H]⁺: 264.1155, found 264.1154.

(S)-N-allyl-2-(4-chlorophenyl)-2-methylbut-3-enamide (13). In a nitrogen-filled glove box, to a 1 dram vial (vial A) equipped with a stir bar was added $[Ir(cod)Cl]_2$ (2.7 mg, 0.0040 mmol, 2 mol %), ligand (*S*_a)-L3 (4.9 mg, 0.0084 mmol, 4.2 mol %), TBD (2.8 mg,

0.020 mmol, 10 mol %), and THF (1 mL). Vial A was stirred at 25 °C (ca. 10 min) while another 1 dram vial (vial B) was charged with MAC nucleophile **1** (25 mg, 0.20 mmol, 100 mol %), THF (1 mL), and BEt₃ (400 μ L, 1M in hexanes). The pre-formed catalyst solution (vial A) was then transferred to vial B followed immediately by carbonate **6b** (96 mg, 0.40 mmol, 200 mol %). The vial was sealed and stirred at 60 °C. After 18 h, the vial was removed from the glove box, transferred to a 20 mL vial with CH₂Cl₂ and concentrated.

To the vial of crude MAC adduct equipped with a stir bar and septum cap was added 1:1 AcOH/DME (0.4 mL, 0.5 M) and CSA (51 mg, 0.22 mmol, 1.1 equiv) under a nitrogen atmosphere. The reaction was heated to 60 °C for 6 h, whereupon the reaction mixture was cooled to ambient temperature, diluted with allyl amine (0.4 mL), and cooled to 0 °C. A solution of 1:1 Et₃N/allyl amine (1.1 mL, 20.4 equiv of Et₃N) was added dropwise over 10 min. The reaction mixture was allowed to warm to ambient temperature over 18 h. whereupon the reaction was slowly quenched with saturated NH₄Cl aqueous solution (5 mL). The aqueous layer was then extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure at 0 °C. The crude residue was purified by preparatory TLC (30% EtOAc/hexanes) to give allyl amide 13 as a colorless oil (31 mg, 63% yield): $\left[\alpha\right]_{D}^{25}$ +10.2 $(c 1.6, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.17 (m, 4H), 6.29 (dd, J = 17.4, 10.6) Hz, 1H), 5.90 - 5.75 (m, 1H), 5.64 (s, 1H), 5.33 (dd, J = 10.6, 0.8 Hz, 1H), 5.20 - 5.03 (m, 3H), 3.96 – 3.82 (m, 2H), 1.67 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 142.0, 141.8, 134.1, 133.1, 128.9, 128.8, 116.6, 116.5, 54.3, 42.3, 24.6; IR (Neat Film, NaCl) 3341, 3085, 2983, 2931, 1739, 1658, 1520, 1493, 1414, 1270, 1096, 1014, 922, 827, 725, 657 cm⁻¹; HRMS (FAB+) m/z calc'd for C₁₄H₁₇NOCl [M+H]⁺: 250.0999, found 250.0991.

Experimental Procedures and Spectroscopic Data for the Product Transformations

Methyl (S)-2-(4-chlorophenyl)-2-methylbutanoate (14). To a solution of olefin **10** (13 mg, 0.056 mmol, 1 equiv) in EtOAc (1 mL) was added Pd/C (2.5 mg, 20% w/w). The reaction mixture was sparged with a hydrogen gas (balloon) for 5 minutes and then stirred under a hydrogen atmosphere for 18 h, whereupon the reaction was filtered through celite with EtOAc (5 mL) and concentrated under reduced pressure at 0 °C to give alkyl **14** as a colorless oil (12 mg, 97% yield): $[\alpha]_D^{25}$ +3.6 (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.15 (m, 4H), 3.67 (s, 3H), 2.31 – 1.80 (m, 2H), 1.53 (s, 3H), 0.83 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 142.4, 132.6, 128.6, 127.7, 52.3, 50.4, 32.0, 22.2, 9.2; IR (Neat Film, NaCl) 2970, 2880, 1731, 1493, 1457, 1383, 1307, 1238, 1147, 1096, 1012, 824, 756, 720 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₂H₁₆O₂Cl [M+H]⁺: 227.0839, found 227.0840.

(*S*)-2-(4-Chlorophenyl)-2-methylbut-3-en-1-ol (15). DIBAL (0.029 mL, 0.16 mmol, 3 equiv) was added dropwise to a solution of methyl ester 10 (13 mg, 0.056 mmol, 1 equiv) in Et₂O (1.0 mL) at 0 °C. The mixture was stirred at 0 °C for 2 h, whereupon the reaction was quenched with a saturated Rochelle's salt aqueous solution (1 mL) and stirred for 18 h at ambient temperature. The aqueous layer was then extracted with CH_2Cl_2 (3 x 5 mL) and the combined organic layers were washed with brine (5 mL), dried over Na₂SO₄, and concentrated under reduced pressure at 0 °C. The crude residue was purified by preparatory TLC (25% acetone/hexanes) to give alcohol 15 as a colorless oil (8 mg, 73% yield): $[\alpha]_D^{25}$ +11.0 (*c* 0.4, CHCl₃). Characterization data match those reported in the literature.¹⁷

(3S)-3-(4-Chlorophenyl)-4-hydroxy-3-methyldihydrofuran-2(3H)-one (16). To a solution of olefin 10 (24 mg, 0.10 mmol, 1 equiv) in THF/H₂O (4:1, 1 mL) was added K₂OsO₄ (4.0 mg, 0.010 mmol, 0.1 equiv) and N-methylmorpholine N-oxide (19 mg, 0.16 mmol, 1.6 equiv). The reaction mixture was stirred for 18 h, whereupon the reaction was quenched with sodium sulfite (10 mg, 0.079 mmol, 0.79 equiv) and diluted with water (0.5 mL). The aqueous layer was then extracted with EtOAc $(3 \times 5 \text{ mL})$ and the combined organic layers were washed with brine (5 mL), dried over Na₂SO₄, and concentrated under reduced pressure at 0 °C. The crude residue was purified by preparatory TLC (30% acetone/hexanes) to give lactone 16 as a colorless oil (19 mg, 82% yield, 1:1 dr): $\left[\alpha\right]_{D}^{25}$ – 115.6 (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.26 (m, 4H), 4.58 (dd, J = 4.4, 2.8 Hz, 0.5H), 4.54 (dd, J = 10.2, 4.5 Hz, 0.5H), 4.35 – 4.31 (m, 0.5H), 4.28 – 4.20 (m, 1H), 4.16 (dd, J = 10.1, 2.8 Hz, 0.5H), 1.66 (s, 1.5H), 1.57 (s, 1.5H); ¹³C NMR (101 MHz, CDCl₃) δ 178.4, 178.1, 138.4, 134.4, 134.0, 133.9, 129.6, 129.4, 129.3, 127.8, 76.5, 76.2, 71.8, 71.6, 53.2, 52.8, 22.3, 18.5; IR (Neat Film, NaCl) 3448, 2976, 2929, 1761, 1496, 1384, 1218, 1178, 1096, 1072, 1014, 982, 927, 737, 688 cm⁻¹; HRMS (FAB+) *m/z* calc'd for $C_{11}H_{12}O_3CI [M+H]^+$: 227.0475, found 227.0481.

Methyl (*R*)-2-(4-chlorophenyl)-2-methyl-3-oxopropanoate (17). A solution of olefin 10 (10 mg, 0.045 mmol, 1 equiv) and NaHCO₃ (1.0 mg, 0.011 mmol, 0.25 equiv) in MeOH/

CH₂Cl₂ (1:5, 2.6 mL) was cooled to -78 °C. Ozone was bubbled through the reaction mixture for 0.5 h, whereupon the reaction mixture was sparged with N₂ and dimethyl sulfide (0.10 mL, 0.14 mmol, 3 equiv) was added. The cooling bath was then removed and the reaction was stirred for 18 h at ambient temperature. The reaction mixture was concentrated under reduced pressure at 0 °C and the crude residue was purified by preparatory TLC (17% Et₂O/hexanes) to afford aldehyde **17** as a colorless oil (5.0 mg, 50% yield): [α]_D²⁵+9.1 (*c* 0.07, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 7.41 – 7.33 (m, 2H), 7.22 – 7.13 (m, 2H), 3.81 (s, 3H), 1.69 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 171.8, 134.8, 134.5, 129.5, 128.5, 61.7, 53.1, 18.0; IR (Neat Film, NaCl) 2992, 2954, 2845, 2726, 1721, 1596, 1494, 1455, 1252, 1122, 1096, 1013, 911, 823, 758, 718 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₁H₁₂ClO₃ [M+H]⁺: 227.0475, found 227.0479.

Crystal Structure Data for Carboxylic Acid 7h

Carboxylic acid **7h** was recrystallized by slow evaporation of CH_2Cl_2 to provide crystals suitable for X-ray analysis.

Table S2. Crystal data and structure	e refinement for 7 h .
--------------------------------------	-------------------------------

Empirical formula	C11 H11 N O4	
Formula weight	221.21	
Temperature	200(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P2 ₁	
Unit cell dimensions	a = 7.3561(3) Å	a= 90°.
	b = 6.7600(3) Å	b= 94.5940(10)°.
	c = 10.9461(5) Å	g = 90°.
Volume	542.57(4) Å ³	
Z	2	
Density (calculated)	1.354 Mg/m ³	

Absorption coefficient	0.879 mm ⁻¹
F(000)	232
Theta range for data collection	4.051 to 72.406°.
Index ranges	-9<=h<=9, -8<=k<=8, -13<=l<=13
Reflections collected	24109
Independent reflections	2132 [R(int) = 0.0427]
Completeness to theta = 67.679°	100.0 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2132 / 1 / 146
Goodness-of-fit on F ²	1.315
Final R indices [I>2sigma(I)]	R1 = 0.0495, wR2 = 0.1336
R indices (all data)	R1 = 0.0497, wR2 = 0.1346
Absolute structure parameter	0.08(5)
Extinction coefficient	n/a
Largest diff. peak and hole	0.312 and -0.539 e.Å ⁻³

Table S3. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for 7h. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U(eq)
C(1)	6927(3)	5263(3)	4602(2)	32(1)
C(2)	7734(2)	5232(3)	5795(2)	30(1)
C(3)	6640(2)	5267(3)	6762(2)	27(1)
C(4)	4752(2)	5328(3)	6510(2)	33(1)
C(5)	3969(2)	5364(3)	5309(2)	35(1)
C(6)	5062(3)	5332(3)	4329(2)	34(1)
C(7)	7495(2)	5394(3)	8089(2)	33(1)
C(8)	7573(4)	7595(4)	8448(2)	52(1)
C(9)	9331(3)	4360(5)	8210(2)	51(1)
C(10)	10884(3)	5180(9)	8624(2)	86(2)
C(11)	6291(2)	4290(3)	8935(2)	33(1)
O(1)	6125(2)	2390(3)	8666(1)	46(1)
O(2)	5572(2)	5042(3)	9776(1)	49(1)
N(1)	8117(3)	5216(4)	3590(2)	47(1)
O(3)	9753(2)	5210(6)	3825(2)	84(1)
O(4)	7426(3)	5157(6)	2546(2)	81(1)

C(1)-C(6)	1.381(3)
C(1)-C(2)	1.390(2)
C(1)-N(1)	1.466(3)
C(2)-C(3)	1.380(2)
C(3)-C(4)	1.395(2)
C(3)-C(7)	1.538(2)
C(4)-C(5)	1.392(3)
C(5)-C(6)	1.391(3)
C(7)-C(9)	1.517(3)
C(7)-C(11)	1.527(2)
C(7)-C(8)	1.539(3)
C(9)-C(10)	1.318(4)
C(11)-O(2)	1.210(2)
C(11)-O(1)	1.321(3)
N(1)-O(3)	1.210(3)
N(1)-O(4)	1.214(3)
C(6)-C(1)-C(2)	123.08(18)
C(6)-C(1)-N(1)	118.68(17)
C(2)-C(1)-N(1)	118.25(17)
C(3)-C(2)-C(1)	119.26(16)
C(2)-C(3)-C(4)	118.74(16)
C(2)-C(3)-C(7)	120.38(14)
C(4)-C(3)-C(7)	120.72(15)
C(5)-C(4)-C(3)	121.17(17)
C(6)-C(5)-C(4)	120.45(17)
C(1)-C(6)-C(5)	117.31(17)
C(9)-C(7)-C(11)	106.08(18)
C(9)-C(7)-C(3)	110.51(16)
C(11)-C(7)-C(3)	109.42(14)
C(9)-C(7)-C(8)	114.1(2)
C(11)-C(7)-C(8)	109.22(15)
C(3)-C(7)-C(8)	107.45(17)
C(10)-C(9)-C(7)	125.3(4)

Table S4. Bond lengths [Å] and angles $[\circ]$ for 7h.

O(2)-C(11)-O(1)	122.7(2)
O(2)-C(11)-C(7)	124.49(19)
O(1)-C(11)-C(7)	112.85(17)
O(3)-N(1)-O(4)	122.26(19)
O(3)-N(1)-C(1)	118.91(17)
O(4)-N(1)-C(1)	118.82(19)

Table S5. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 7h. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2hk \ a^*b^*U^{12}]$

	U ¹¹	U ²²	U33	U ²³	U13	U12
C(1)	38(1)	32(1)	26(1)	-1(1)	2(1)	1(1)
C(2)	29(1)	34(1)	28(1)	0(1)	1(1)	0(1)
C(3)	30(1)	25(1)	27(1)	1(1)	1(1)	-1(1)
C(4)	30(1)	34(1)	35(1)	1(1)	4(1)	1(1)
C(5)	29(1)	34(1)	41(1)	3(1)	-5(1)	-1(1)
C(6)	40(1)	28(1)	32(1)	-2(1)	-8(1)	1(1)
C(7)	31(1)	42(1)	26(1)	0(1)	3(1)	-4(1)
C(8)	72(2)	48(1)	36(1)	-7(1)	6(1)	-24(1)
C(9)	33(1)	91(2)	30(1)	16(1)	4(1)	5(1)
C(10)	32(1)	176(5)	49(1)	35(2)	-6(1)	-14(2)
C(11)	33(1)	39(1)	26(1)	2(1)	1(1)	2(1)
O(1)	62(1)	37(1)	42(1)	0(1)	22(1)	-4(1)
O(2)	60(1)	51(1)	38(1)	-7(1)	22(1)	5(1)
N(1)	50(1)	67(1)	26(1)	2(1)	4(1)	5(1)
O(3)	40(1)	176(3)	36(1)	0(1)	9(1)	5(1)
O(4)	66(1)	151(3)	25(1)	-7(1)	-1(1)	12(1)

	Х	У	Z	U(eq)
H(2)	9023	5188	5942	36
H(4)	3987	5347	7168	40
H(5)	2680	5410	5158	42
H(6)	4546	5355	3505	40
H(8A)	8291	8322	7880	78
H(8B)	8145	7730	9284	78
H(8C)	6333	8135	8410	78
H(9)	9363	3012	7967	62
H(10A)	10911	6525	8877	103
H(10B)	11978	4427	8671	103
H(1)	5466	1842	9160	69

Table S6. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($A^2x \ 10^3$) for 7h.

References

¹ (a) Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. *Synthesis* **2009**, 2076–2082; (b) Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. *J. Am. Chem. Soc.* **2012**, *134*, 4812–4821.

² Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Org. Synth. 2015, 92, 1-12.

³ (a) Nemoto, H.; Li, X.; Ma, R.; Suzuki, I.; Shibuya, M. *Tetrahedron Lett.* **2003**, *44*, 73–75; (b) Yang, K. S.; Nibbs, A. E.; Türkmen, Y. E.; Rawal, V. H. J. Am. Chem. Soc. **2013**, *135*, 16050–16053.

⁴ (a) Ardolino, M. J.; Morken, J. P. J. Am. Chem. Soc. **2014**, 136, 7092–7100; (b) Evans, P. A.; Oliver, S.; Chae, J. J. Am. Chem. Soc. **2012**, 134, 19314–19317.

⁵ Matsubara, R.; Jamison, T. F. J. Am. Chem. Soc. 2010, 132, 6880-6881.

⁶ Guzman-Martinez, A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10634–10637.

⁷ Ruan, J.; Li, X.; Saidi, O.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 2424–2425.

- ⁸ Duan, Z.-C.; Hu, X.-P.; Zhang, C.; Zheng, Z. J. Org. Chem. 2010, 75, 8319–8321.
- ⁹ Nakatsuji, H.; Ueno, K.; Misaki, T.; Tanabe, Y. Org. Lett. 2008, 10, 2131–2134.
- ¹⁰ Gürtler, C.; Buchwald, S. L. Chem. Eur. J. **1999**, *5*, 3107–3112.
- ¹¹ Sano, S.; Yokoyama, K.; Shiro, M.; Nagao, Y. Chem. Pharm. Bull. 2002, 50, 706–709.
- ¹² Ho Oh, C.; Jung, H. H.; Kim, K. S.; Kim, N. Angew. Chem. Int. Ed. 2003, 42, 805–808.
- ¹³ Bernasconi, M.; Ramella, V.; Tosatti, P.; Pfaltz, A. Chem. Eur. J. 2014, 20, 2440-2444.
- ¹⁴ Bensel, N.; Höhn, J.; Marschall, H.; Weyerstahl, P. Eur. J. Inorg. Chem. **1979**, 112, 2256–2277.
- ¹⁵ Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130, 15254–15255.
- ¹⁶ Duong, H. A.; Huleatt, P. B.; Tan. Q.-W.; Shuying, E. L. Org. Lett. **2013**, *15*, 4034–4037.
- ¹⁷ Ngai, M.-Y.; Skucas, E.; Krische, M. J. Org. Lett. 2008, 10, 2705–2708.

Infrared spectrum (Thin Film, NaCl) of compound SI-1.

¹³C NMR (101 MHz, CDCl₃) of compound **S1-1**.

Infrared spectrum (Thin Film, NaCl) of compound SI-2.

¹³C NMR (101 MHz, CDCl₃) of compound **S1-2**.

¹H NMR (400 MHz, CDCl₃) of compound **3**.

Infrared spectrum (Thin Film, NaCl) of compound 3.

¹³C NMR (101 MHz, CDCl₃) of compound **3**.

Infrared spectrum (Thin Film, NaCl) of compound 4.

¹³C NMR (101 MHz, CDCl₃) of compound **4**.

¹H NMR (400 MHz, CDCl₃) of compound **6c**.

Infrared spectrum (Thin Film, NaCl) of compound 6c.

 ^{13}C NMR (101 MHz, CDCl₃) of compound **6c**.

Infrared spectrum (Thin Film, NaCl) of compound 6f.

¹³C NMR (101 MHz, CDCl₃) of compound **6f**.

S41

Infrared spectrum (Thin Film, NaCl) of compound 6g.

¹³C NMR (101 MHz, CDCl₃) of compound **6g**.

Infrared spectrum (Thin Film, NaCl) of compound 6h.

¹³C NMR (101 MHz, CDCl₃) of compound **6h**.

Infrared spectrum (Thin Film, NaCl) of compound 6i.

¹³C NMR (101 MHz, CDCl₃) of compound **6i**.

Infrared spectrum (Thin Film, NaCl) of compound 6k.

¹³C NMR (101 MHz, CDCl₃) of compound **6k**.

Infrared spectrum (Thin Film, NaCl) of compound 7b.

¹³C NMR (101 MHz, CDCl₃) of compound **7b**.

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound 7c.

Infrared spectrum (Thin Film, NaCl) of compound 7c.

 ^{13}C NMR (101 MHz, CDCl₃) of compound **7c**.

$^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound 7d.

Infrared spectrum (Thin Film, NaCl) of compound 7d.

¹³C NMR (101 MHz, CDCl₃) of compound **7d**.

Infrared spectrum (Thin Film, NaCl) of compound 7e.

¹³C NMR (101 MHz, CDCl₃) of compound 7e.

¹H NMR (400 MHz, CDCl₃) of compound 7f.

Infrared spectrum (Thin Film, NaCl) of compound 7f.

¹³C NMR (101 MHz, CDCl₃) of compound 7f.

Infrared spectrum (Thin Film, NaCl) of compound 7g.

 ^{13}C NMR (101 MHz, CDCl₃) of compound 7g.

Infrared spectrum (Thin Film, NaCl) of compound 7h.

 ^{13}C NMR (101 MHz, CDCl₃) of compound **7h**.

¹H NMR (400 MHz, CDCl₃) of compound 7i.

Infrared spectrum (Thin Film, NaCl) of compound 7i.

¹³C NMR (101 MHz, CDCl₃) of compound 7i.

¹³C NMR (101 MHz, CDCl₃) of compound 7j.

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of compound 7k.

Infrared spectrum (Thin Film, NaCl) of compound 7k.

¹³C NMR (101 MHz, CDCl₃) of compound 7k.

HMBC (400 MHz, CDCl₃) of compound 7k.

Infrared spectrum (Thin Film, NaCl) of compound 8b.

¹³C NMR (101 MHz, CDCl₃) of compound **8b**.

¹H NMR (400 MHz, CDCl₃) of compound 8c.

Infrared spectrum (Thin Film, NaCl) of compound 8c.

 ^{13}C NMR (101 MHz, CDCl₃) of compound 8c.

¹H NMR (400 MHz, CDCl₃) of compound 8e.

Infrared spectrum (Thin Film, NaCl) of compound 8e.

¹³C NMR (101 MHz, CDCl₃) of compound 8e.

Infrared spectrum (Thin Film, NaCl) of compound 9a.

¹³C NMR (101 MHz, CDCl₃) of compound **9a**.

S78

Infrared spectrum (Thin Film, NaCl) of compound 9b.

¹³C NMR (101 MHz, CDCl₃) of compound **9b**.

S81

Infrared spectrum (Thin Film, NaCl) of compound 10.

¹³C NMR (101 MHz, CDCl₃) of compound **10**.

¹³C NMR (101 MHz, CDCl₃) of compound **11**.

Infrared spectrum (Thin Film, NaCl) of compound 12.

¹³C NMR (101 MHz, CDCl₃) of compound **12**.

Infrared spectrum (Thin Film, NaCl) of compound 13.

¹³C NMR (101 MHz, CDCl₃) of compound **13**.

S91

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Infrared spectrum (Thin Film, NaCl) of compound 16.

¹³C NMR (101 MHz, CDCl₃) of compound **16**.

¹³C NMR (101 MHz, CDCl₃) of compound **17**.