Supporting Information for Enantioselective γ-Alkylation of α,β-Unsaturated Malonates and Ketoesters by a Sequential Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement.

Wen-Bo Liu[†], Noriko Okamoto[†], Eric J. Alexy, Allen Y. Hong, Kristy Tran, and Brian M. Stoltz*

Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 stoltz@caltech.edu

Table of Contents:

Materials and Methods	SI 2
List of Abbreviations	SI 3
Table S1. Optimization of Reaction Parameters	SI 4
General Procedure of Optimization Reactions (Table S1)	SI 5
General Procedure for the Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement Cyclic Alkylidene Malonates	
General Procedure for the Synthesis of Cyclic Alkylidene Malonates	SI 21
Determination of the Absolute Configuration of 5aa	SI 23
General Procedure for the Ir-Catalyzed Asymmetric Allylic Alkylation of Endocyclic α , β -Ur β -Ketoesters	
Determination of the Absolute Configuration of 7ca	SI 34
General Procedure for the Cope Rearrangment of β -Ketoesters	SI 35
Synthesis of Endocyclic α , β -Unsaturated Ketoesters	SI 36
Table S2. Determination of Enantiomeric Excess	SI 39
Crystal Structure Analysis of Alkylation Product 3aa (smaple No.: p15559)	SI 44
Crystal Structure Analysis of Diol S5aa (smaple No.: p15573)	SI 54
References	SI 66
¹ H NMR and ¹³ C NMR Spectra	SI 67

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon.¹ Reaction progress was monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS. TLC was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO₄ staining. Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40-63 nm) was used for flash chromatography. ¹H NMR spectra were recorded on Varian Inova 500 MHz and Bruker 400 MHz spectrometers and are reported relative to residual CHCl₃ (δ 7.26 ppm). ¹³C NMR spectra were recorded on a Varian Inova 500 MHz spectrometer (125 MHz) and Bruker 400 MHz spectrometers (100 MHz) and are reported relative to CHCl₃ (§ 77.16 ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet, app = apparent. Data for ${}^{13}C$ NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained by use of a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm^{-1}) . Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are reported as: $\left[\alpha\right]_{D}^{T}$ (concentration in 10 mg/1 mL, solvent). Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical chromatography system utilizing Chiralpak (AD-H, AS-H or IC) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. High resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+), or obtained from Caltech mass spectrometry laboratory.

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa Aesar and used as received unless otherwise stated. Ligands L1, L4–L6,² and allyl carbonates,³ were prepared by known methods.

List of Abbreviations:

ee – enantiomeric excess, dr – diastereomeric ratio, SFC – supercritical fluid chromatography, TLC – thin-layer chromatography, THF – tetrahydrofuran, IPA – isopropanol, TBD – 1,5,7-triazabicyclo[4.4.0]dec-5-ene, cod – cis,cis-1,5-cyclooctadiene.

MeO	ОМе	TBD (10 m base (x eo solvent, 20 °C	nol %) ol %) quiv) , 12–24 h	0₂C CO₂N	le ▶ + <	MeO ₂ C CO ₂ M	/le	
	 1a	Ph 2a	OCO₂Me	3aa		4aa		
entry ^a	ligand	solvent	base (x equiv)	equiv of 1a	equiv of <i>2a</i>	conv (%) ^{b,c}	3aa:4aa ^b	ee of <i>3aa</i> (%) ^d
1	L1	THF	LiO <i>t</i> -Bu (1)	2	1	>95 (28)	1:1	95
2	L1	THF	NaO <i>t</i> -Bu (2)	2	1	>95 (47)	3:1	94
3	L1	THF	NaH (2)	2	1	<5	-	-
4	L1	THF	KO <i>t</i> -Bu (2)	2	1	>95 (43)	3:1	97
5	L1	THF	KO <i>t</i> -Bu (1)	2	1	>95 (57)	3:1	>99
6	L1	THF	KO <i>t</i> -Bu (1)	1.2	1	89	3:1	>99
7	L1	THF	KO <i>t</i> -Bu (0.3)	1.2	1	32	3:1	-
8	L1	THF	Cs_2CO_3 (1)	1.2	1	14	1:1	-
9	L1	THF	CsOH·H ₂ O (1)	1.2	1	74	3:1	-
10	L1	dioxane	KO <i>t</i> -Bu (1)	2	1	>95 (54)	3:1	>99
11	L1	Et ₂ O	KO <i>t</i> -Bu (1)	2	1	90	2:1	>99
12	L1	MTBE	KO <i>t</i> -Bu (1)	2	1	86	2:1	95
13	L1	CH ₂ Cl ₂	KO <i>t</i> -Bu (1)	2	1	>95	2:1	97
14	L1	DCE	KO <i>t</i> -Bu (1)	2	1	59	2:1	98
15	L1	toluene	KO <i>t</i> -Bu (1)	2	1	94	2:1	97
16	L1	cyclohexane	KO <i>t</i> -Bu (1)	2	1	94	2:1	97
17	L1	MeCN	KO <i>t</i> -Bu (1)	2	1	>95	1:1	94
18	L1	DMF	KO <i>t</i> -Bu (1)	2	1	>95	1:1	99
19	L2	THF	KO <i>t</i> -Bu (1)	2	1	<10 ^e	-	-
20	L3	THF	KO <i>t</i> -Bu (1)	2	1	>95 ^e	>20:1	>99
21	(±)-L4	THF	KO <i>t</i> -Bu (1)	2	1	>95	1:1	-
22	L5	THF	KO <i>t</i> -Bu (1)	2	1	52	2:1	40
23	L6	THF	KO <i>t</i> -Bu (1)	2	1	>95 (69)	>20:1	>99
24	L6	THF	KO <i>t</i> -Bu (1)	1	1.5	89 (84)	>20:1	>99
25	L6	THF	LiO <i>t-</i> Bu (1.2)	1	1.5	92 (90)	>20:1	>99
26	L6	THF	LiO <i>t</i> -Bu (1.2)	1	2	>95 (93)	>20:1	>99

Table S1. Optimization of Reaction Parameters.

^{*a*} Reactions performed at 0.1 mmol scale in THF (1 mL) at 20 °C for 12–24 h. ^{*b*} Determined by ¹H NMR analysis of the crude reaction mixture. ^{*c*} Yield of isolated product **3aa** given in parenthesis. ^{*d*} Determined by SFC analysis (Chiralpak AD-H). ^{*e*} Complex mixture.

General Procedure for Optimization Reactions (Table S1):

All experiments were performed in a nitrogen-filled glove box.

To a 2 dram vial (vial A) equipped with a magnetic stirring bar was added $[Ir(cod)Cl]_2$ (1.4 mg, 0.002 mmol, 2 mol%), ligand L (0.004 mmol, 4 mol%), TBD (1.4 mg, 0.01 mmol, 10 mol%), and 0.5 mL of THF. Vial A was stirred at 20 °C (~10 min) while another 2 dram vial (vial B) was charged with base, 0.5 mL of THF, alkylidene malonate **1a**, and carbonate **2a**. The pre-formed catalyst solution (vial A) was then transferred to vial B. The vial was sealed, stirred at 20 °C and monitored by TLC or UHPLC-MS. Upon completion of the reaction, the vial was removed from the glovebox and the THF removed under reduced pressure. The resulting residue was dissolved in Et₂O and filtered through a silica pad, rinsing with Et₂O. The regioselectivity (branched to linear) was determined by ¹H NMR analysis of this crude mixture. The residue was purified by silica gel flash chromatography (gradient elution, $0\rightarrow 5\rightarrow 10\%$ Et₂O in hexanes) to afford the desired product.

Dimethyl (R)-2-(cyclohept-1-en-1-yl)-2-(1-phenylallyl)malonate (3aa)

White solid, >99% ee, $[\alpha]_D^{25}$ -72.1 (*c* 0.76, CHCl₃); $R_f = 0.3$ (10% Et₂O in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.36 - 7.31 (m, 2H), 7.26 - 7.21 (m, 2H), 7.20 - 7.14 (m, 1H), 6.36 (ddd, *J* = 17.0, 10.2, 8.9 Hz, 1H), 6.17 (t, *J* = 6.8 Hz, 1H), 5.06 (ddd, *J* = 10.2, 1.8, 0.8 Hz, 1H), 5.00 (ddd, *J* = 17.1, 1.8, 1.1 Hz, 1H), 4.29 (d, *J* = 8.9 Hz, 1H), 3.68 (s, 3H), 3.61 (s, 3H), 2.18-2.10 (m, 2H), 1.96-1.81 (m, 2H), 1.75-1.66 (m, 1H), 1.64-1.55 (m, 1H), 1.54-1.31 (m, 3H), 1.31-1.20 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 170.7, 170.3, 140.5, 139.2, 138.6, 132.2, 130.2, 127.9, 126.8, 116.9, 70.1, 53.9, 52.3, 52.2, 32.7, 32.4, 28.7, 26.3, 26.2; IR (Neat Film, NaCl) 2925, 1737, 1728, 1451, 1433, 1241, 1050 cm⁻¹; HRMS (ESI-APCI+) *m/z* calc'd for C₂₁H₂₇O₄ [M+H]⁺: 343.1904, found 343.1905; SFC conditions: 2% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): minor = 7.34, major = 8.12.

General Procedure for the Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement Reactions of Cyclic Alkylidene Malonates.

<u>Please note</u> that the absolute configuration was determined only for compound **5a** via Xray analysis of its derivative (vide infra). The absolute configuration for all other products **5** has been inferred by analogy. For respective SFC conditions, please refer to Table S2.

General Procedure A (One-pot): In a nitrogen-filled glove box, [Ir(cod)Cl]₂ (2.7 mg, 0.004 mmol, 2 mol%), ligand L6 (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%) were added to a 2 dram vial equipped with a magnetic stirring bar. The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a brown solution. To another 2 dram vial was added LiOt-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), alkylidene malonates 1 (0.2 mmol, 1 equiv), allylic carbonates 2 (0.3–0.4 mmol, 1.5-2 equiv), and 1 mL of THF. Then, the above pre-formed catalyst solution was transferred to this vial by syringe. The vial was capped and stirred at 20 °C until the alkylidene malonate was fully consumed, as indicated by TLC or UHPLC-MS analysis. Upon completion of the reaction, the vial was removed from the glovebox and the THF removed under reduced pressure. The regioselectivity (branched to linear, b:l >20:1 for all cases) was determined by ¹H NMR of the crude reaction mixture. The crude sample was recovered from the NMR tube and concentrated. The resulting residue was dissolved in 2 mL of toluene, placed in a sealed vial, and stirred at 100 °C for 5 h. After removal of the solvent, the residue was purified by silica gel flash chromatography to afford the desired product.

General Procedure B (Column Separation): In a nitrogen-filled glove box, [Ir(cod)Cl]₂ (2.7 mg, 0.004 mmol, 2 mol%), ligand **L6** (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%) were added to a 2 dram vial equipped with a

magnetic stirring bar. The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a brown solution. To another 2 dram vial was added LiO*t*-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), alkylidene malonates **1** (0.2 mmol, 1 equiv), allylic carbonates **2** (0.3–0.4 mmol, 1.5–2 equiv), and 1 mL of THF. Then the above pre-formed catalyst solution was transferred to this vial by syringe. The vial was capped and stirred at 20 °C until the alkylidene malonate was fully consumed, as indicated by TLC or UHPLC-MS analysis. Upon completion of the reaction, the vial was removed from the glovebox and the THF removed under reduced pressure. The regioselectivity (branched to linear: b:l >20:1 for all cases) was determined by ¹H NMR of the crude reaction mixture. The residue was then purified by silica gel flash chromatography to afford the desired allylation product, which was then dissolved in 2 mL of toluene, sealed and stirred for 5 h at 100 °C. After removal of the solvent, the residue was purified by silica gel flash chromatography to afford the desired product.

Dimethyl (S)-2-(2-cinnamylcyclohexylidene)malonate 5aa: The *General Procedure A* was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added [Ir(cod)Cl]₂ (2.7 mg, 0.004 mmol, 2 mol%), ligand **L6** (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%). The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiO*t*-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), dimethyl 2-cyclohexylidenemalonate **1a** (45.2 mg, 0.2 mmol, 1 equiv), and cinnamyl carbonate **2a** (76.8 mg, 0.4 mmol, 2.0 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at 20 °C for 12 h, until 2-cyclohexylidenemalonate 1a was fully consumed, as indicated by TLC or UHPLC-MS analysis. Upon completion of the reaction the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. Et₂O was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with Et₂O and the filtrate was

concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ¹H NMR of this crude mixture as >20:1. This crude oil was then dissolved in 2 mL of toluene and stirred at 100 °C for 5 h. After the evaporation of toluene under reduced pressure, the desired product 5aa (62.4 mg, 91% yield) was obtained as a colorless oil after purification by silica gel flash chromatography (gradient elution, $10 \rightarrow 20\%$ Et₂O in hexanes). 96% ee; $[\alpha]_D^{25} - 111.1$ (*c* 0.72, CHCl₃); $R_f = 0.2$ $(10\% \text{ Et}_2\text{O in hexanes});$ ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.32 (m, 2H), 7.31 – 7.27 (m, 2H), 7.22 - 7.16 (m, 1H), 6.37 (d, J = 15.7 Hz, 1H), 6.17 (ddd, J = 15.5, 8.1, 6.8 Hz, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 3.13 (ddt, J = 11.0, 8.4, 5.7 Hz, 1H), 2.99 – 2.90 (m, 1H), 2.45 - 2.40 (m, 1H), 2.28 - 2.22 (m, 1H), 2.11 - 1.96 (m, 3H), 1.87 - 1.69 (m, 2H), 1.51-1.39 (m, 1H), 1.36 - 1.24 (m, 2H), 1.17 - 1.04 (m, 1H); 13 C NMR (125 MHz, CDCl₃) δ 168.3, 166.5, 165.8, 137.7, 131.8, 128.6, 127.9, 127.1, 126.2, 124.6, 52.2, 52.1, 44.4, 39.9, 31.7, 30.9, 29.8, 29.6, 25.9; IR (Neat Film, NaCl) 2924, 1723, 1618, 1433, 1231, 1192, 1068 cm⁻¹; HRMS (FAB+) m/z calc'd for C₂₁H₂₇O₄ [M+H]⁺: 343.1909, found 343.1919; SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, $t_{\rm R}$ (min): major = 4.55, minor = 4.88.

Dimethyl (S,E)-2-(2-(3-(p-tolyl)allyl)cycloheptylidene)malonate 5ab: The General *Procedure B* was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added [Ir(cod)Cl]₂ (2.7 mg, 0.004 mmol, 2 mol%), ligand L6 (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%). The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiOt-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), dimethyl 2cycloheptylidenemalonate **1a** (45.2 mg, 0.2 mmol, 1 equiv), and *p*-methylcinnamyl carbonate **2b** (82.4 mg, 0.4 mmol, 2.0 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at 20 °C for 12 h, the vial was removed from the glovebox, uncapped, and THF was evaporated under

reduced pressure. Et₂O was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with Et₂O and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ¹H NMR of this crude mixture as >20:1. The residue was purified by silica gel flash chromatography (gradient elution, $10 \rightarrow 20\%$ Et₂O in hexanes) to afford a colorless oil. This oil was then dissolved in 2 mL of toluene and stirred at 100 °C for 5 h. After the evaporation of toluene under reduced pressure, the desired product **5ab** (56.5 mg, 79% yield) was obtained as a colorless oil after purification by silica gel flash chromatography (10% Et₂O in hexanes). 96% ee, $[\alpha]_D^{25}$ –107.2 (*c* 1.67, CHCl₃); $R_f = 0.2$ (10% Et₂O in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.21 (m, 2H), 7.14 – 7.06 (m, 2H), 6.34 (d, J = 15.7 Hz, 1H), 6.11 (ddd, J = 15.4, 8.1, 6.8 Hz, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 3.14 - 3.08 (m, 1H), 3.01 - 2.89 (m, 1H), 2.44 - 2.38 (m, 1H), 2.32 (s, 3H), 2.28 – 2.17 (m, 1H), 2.11 – 1.94 (m, 3H), 1.87 – 1.70 (m, 2H), 1.50 – 1.39 (m, 1H), 1.36 -1.23 (m, 2H), 1.15 - 1.03 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 166.5, 165.7, 136.8, 134.9, 131.6, 129.3, 126.7, 126.0, 124.5, 52.1, 52.0, 44.5, 39.9, 31.6, 30.8, 29.7, 29.6, 25.9, 21.3. IR (Neat Film, NaCl) 3022, 2924, 2855, 1727, 1615, 1513, 1434, 1294, 1276, 1231, 1192, 1070, 1045, 1028, 967, 790 cm⁻¹; HRMS (MM: ESI-APCI+) calc'd for C₂₂H₂₉O₄ [M+H]⁺: 357.2060, found 357.2059. SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak IC column, $\lambda = 254$ nm, t_R (min): major = 7.54, minor = 10.52.

Dimethyl (*S*)-2-(2-(3-(4-methoxyphenyl)allyl)cycloheptylidene)malonate 5ac: The *General Procedure B* was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[Ir(cod)Cl]_2$ (2.7 mg, 0.004 mmol, 2 mol%), ligand L6 (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%). The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiOt-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), dimethyl 2-cycloheptylidenemalonate 1a (45.2 mg, 0.2 mmol, 1 equiv), and *p*-methoxylcinnamyl

carbonate 2c (88.8 mg, 0.4 mmol, 2.0 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at 20 °C for 12 h. Then the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. Et₂O was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with Et₂O and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ¹H NMR of this crude mixture as >20:1. The residue was purified by silica gel flash chromatography (gradient elution, $10 \rightarrow 20\%$ Et₂O in hexanes) to afford a colorless oil. This oil was then dissolved in 2 mL of toluene and stirred at 100 °C for 5 h. After the evaporation of toluene under reduced pressure, the desired product **5ac** (53.6 mg, 72% yield) was obtained as a colorless oil after purification by silica gel flash chromatography (gradient elution, $10 \rightarrow 20\%$ Et₂O in hexanes). 96% ee, $[\alpha]_{D}^{25}$ -72.7 (c 1.42, CHCl₃); R_f = 0.4 (25% Et₂O in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.23 – 7.17 (m, 2H), 6.79 – 6.73 (m, 2H), 6.24 (dt, J = 15.7, 1.3 Hz, 1H), 5.94 (ddd, J = 15.6, 8.1, 6.8 Hz, 1H), 3.72 (s, 3H), 3.69 (s, 3H), 3.66 (s, 3H), 3.06 - 3.00 (m, 3.06)1H), 2.91 - 2.83 (m, 1H), 2.35 - 2.30 (dddd, J = 13.5, 6.8, 5.3, 1.5 Hz, 1H), 2.15 (dtd, J =13.5, 8.3, 1.2 Hz, 1H), 2.02 – 1.88 (m, 3H), 1.77 – 1.62 (m, 2H), 1.43 – 1.30 (m, 1H), 1.29 - 1.15 (m, 2H), 1.05 - 0.98 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 168.4, 166.5, 165.7, 158.9, 131.1, 130.5, 127.3, 125.6, 124.5, 114.0, 55.4, 52.2, 52.1, 44.5, 39.9, 31.6, 30.8, 29.7, 29.6, 25.9. IR (Neat Film, NaCl) 2928, 2854, 1725, 1608, 1577, 1511, 1434, 1292, 1276, 1233, 1192, 1174, 1139, 1070, 1034, 967 cm⁻¹; HRMS (MM: ESI-APCI+) calc'd for C₂₂H₂₉O₅ [M+H]⁺: 373.2010, found 373.2016. SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak IC column, $\lambda = 254$ nm, t_R (min): major = 7.39, minor = 9.02.

Dimethyl (*S*,*E*)-2-(2-(3-(3-methoxyphenyl)allyl)cycloheptylidene)malonate 5ad: The *General Procedure A* was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[Ir(cod)Cl]_2$ (2.7 mg, 0.004 mmol, 2 mol%), ligand L6 (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%). The vial was

then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiOt-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), dimethyl 2cycloheptylidenemalonate **1a** (45.2 mg, 0.2 mmol, 1 equiv), and *m*-methoxycinnamyl carbonate 2d (88.8 mg, 0.4 mmol, 2 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at 20 °C for 16 h, the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. Et₂O was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with Et₂O and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ¹H NMR of this crude mixture as >20:1. The mixture was recovered from NMR tube, concentrated, and dried under vacuum. Then this crude mixture was dissolved in 2 mL of toluene and stirred at 100 °C for 5 h. After the evaporation of toluene under reduced pressure, the desired product 5ad (67.3 mg, 90% yield) was obtained as a colorless oil after purification by silica gel flash chromatography (gradient elution, $10 \rightarrow 20\%$ Et₂O in hexanes). 97% ee, $[\alpha]_D^{25}$ -98.0 (c 1.35, CHCl₃); R_f = 0.1 (10% Et₂O in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.20 (t, J = 7.9 Hz, 1H), 6.94 (dt, J = 7.5, 1.3 Hz, 1H), 6.88 (dd, J = 2.6, 1.6 Hz, 1H), 6.76 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 6.35 (dt, J = 15.9, 1.3 Hz, 1H), 6.16 (ddd, J = 15.7, 8.1, 6.7 Hz, 1H), 3.81 (s, 3H), 3.76 (s, 3H),3.74 (s, 3H), 3.19 – 3.08 (m, 1H), 3.00 – 2.86 (m, 1H), 2.45 – 2.39 (m, 1H), 2.29 – 2.18 (m, 1H), 2.12 - 1.92 (m, 3H), 1.86 - 1.68 (m, 2H), 1.51 - 1.37 (m, 1H), 1.37 - 1.19 (m, 1H), 1.37 (m, 1H), 1.372H), 1.16 – 1.03 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 168.2, 166.4, 165.7, 159.9, 139.1, 131.7, 129.5, 128.2, 124.5, 118.9, 112.8, 111.5, 55.3, 52.2, 52.1, 44.3, 39.8, 31.6, 30.8, 29.8, 29.6, 25.9. IR (Neat Film, NaCl) 2997, 2945, 2927, 2854, 1725, 1598, 1579, 1488, 1434, 1289, 1231, 1192, 1165, 1155, 1070, 1044, 968, 940, 775 cm⁻¹; HRMS (MM: ESI-APCI+) calc'd for $C_{22}H_{29}O_5$ [M+H]⁺: 373.2010, found 373.2001. SFC conditions: 5% MeOH, 2.5 mL/min, Chiralpak IC column, $\lambda = 254$ nm, t_R (min): major = 9.50, minor = 10.16.

Dimethyl (S,E)-2-(2-(3-(3-chlorophenyl)allyl)cycloheptylidene)malonate 5ae: The General Procedure A was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added [Ir(cod)Cl]₂ (2.7 mg, 0.004 mmol, 2 mol%), ligand L6 (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%). The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was 0.24 mmol. charged with LiOt-Bu (19.2 mg, 1.2 equiv), dimethyl 2cycloheptylidenemalonate **1a** (45.2 mg, 0.2 mmol, 1 equiv), and *m*-chlorocinnamyl carbonate 2e (90.4 mg, 0.4 mmol, 2.0 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at 20 °C for 12 h, the vial was removed from the glovebox, uncapped, and THF evaporated under reduced pressure. Et₂O was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with Et₂O and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ¹H NMR of this crude mixture as >20:1. The mixture was recovered from NMR tube, concentrated, and dried under vacuum. Then this crude mixture was dissolved in 2 mL of toluene and stirred at 100 °C for 5 h. After the evaporation of toluene under reduced pressure, the desired product 5ae (73.3 mg, 97% yield) was obtained as a colorless oil after purification by silica gel flash chromatography (10% Et₂O in hexanes). 96% ee, $[\alpha]_D^{25}$ -88.1 (*c* 1.27, CHCl₃); R_f = 0.3 (10% Et₂O in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.30 (m, 1H), 7.24 – 7.18 (m, 2H), 7.18 – 7.11 (m, 1H), 6.31 (dt, J = 15.6, 1.2 Hz, 1H), 6.18 (ddd, J = 15.7, 8.0, 6.8 Hz, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 3.15 (ddt, J = 11.3, 8.4, 5.8 Hz, 1H), 2.95 - 2.87 (m, 1H), 2.41 (dddd, J = 1.33) 13.5, 6.8, 5.5, 1.4 Hz, 1H), 2.24 (dtd, J = 13.5, 8.1, 1.0 Hz, 1H), 2.09 – 1.94 (m, 3H), 1.85 - 1.72 (m, 2H), 1.50 - 1.37 (m, 1H), 1.36 - 1.20 (m, 2H), 1.15 - 1.03 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 167.9, 166.4, 165.8, 139.6, 134.5, 130.5, 129.8, 129.6, 127.1, 126.1, 124.7, 124.4, 52.2, 52.1, 44.1, 39.8, 31.7, 30.8, 29.8, 29.6, 25.9. IR (Neat Film, NaCl) 2927, 2854, 1726, 1619, 1615, 1593, 1434, 1294, 1276, 1231, 1192, 1140, 1070, 1045, 1028, 964, 776 cm⁻¹; HRMS (FAB+) *m/z* calc'd for $C_{21}H_{26}ClO_4$ [M+H]⁺: 377.1520, found 377.1503. SFC conditions: 3% IPA, 4 mL/min, Chiralpak IC column, $\lambda = 254$ nm, t_R (min): major = 12.00, minor = 17.72.

Dimethyl (S,E)-2-(2-(3-(4-bromophenyl)allyl)cycloheptylidene)malonate 5af: The General Procedure A was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added [Ir(cod)Cl]₂ (2.7 mg, 0.004 mmol, 2 mol%), ligand L6 (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%). The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiOt-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), dimethyl 2cycloheptylidenemalonate **1a** (45.2 mg, 0.2 mmol, 1 equiv), and *p*-bromocinnamyl carbonate **2f** (81.0 mg, 0.3 mmol, 1.5 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at 20 °C for 12 h, the vial was removed from the glovebox, uncapped, and THF evaporated under reduced pressure. Et₂O was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with Et₂O and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ¹H NMR of this crude mixture as >20:1. The residue was purified by silica gel flash chromatography (10% Et₂O in hexanes) to afford a colorless oil. This oil was then dissolved in 2 mL of toluene and stirred at 100 °C for 5 h. After the evaporation of toluene under reduced pressure, the desired product 5af (80.2 mg, 95% yield) was obtained as a colorless oil after purification by silica gel flash chromatography (10% Et₂O in hexanes). 97% ee, $[\alpha]_D^{25}$ -69.9 (*c* 1.66, CHCl₃); $R_f = 0.3$ (10% Et₂O in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.35 (m, 2H), 7.25 – 7.16 (m, 2H), 6.30 (d, J = 15.6 Hz, 1H), 6.15 (ddd, J = 15.6, 8.0, 6.8 Hz, 1H), 3.76 (s, 3H), 3.72 (s, 3H), 3.17 – 3.11 (m, 1H), 2.96 – 2.87 (m, 1H), 2.42 – 2.36 (m, 1H), 2.27 – 2.20 (m, 1H), 2.08 – 1.94 (m, 3H), 1.85 – 1.71 (m, 2H), 1.50 – 1.37 (m, 1H), 1.35 – 1.22 (m, 2H), 1.13 – 1.05 (m, 1H); ¹³C

NMR (125 MHz, CDCl₃) δ 167.9, 166.4, 165.8, 136.6, 131.7, 130.6, 128.8, 127.7, 124.7, 120.8, 52.2, 52.1, 44.2, 39.8, 31.8, 30.8, 29.7, 29.6, 25.9. IR (Neat Film, NaCl) 2927, 2855, 1726, 1619, 1615, 1593, 1567, 1434, 1294, 1276, 1231, 1193, 1140, 1070, 1028, 964, 777 cm⁻¹; HRMS (MM: ESI-APCI+) calc'd for C₂₁H₂₄O₄Br [M–H₂+H]⁺: 419.0852, found 419.0847. SFC conditions: 9% MeOH, 2.5 mL/min, Chiralpak IC column, λ = 254 nm, t_R (min): major = 5.33, minor = 5.85.

Dimethyl (S.E)-2-(2-(3-(thiophen-2-vl)allyl)cycloheptylidene)malonate 5ag: The General Procedure A was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added [Ir(cod)Cl]₂ (2.7 mg, 0.004 mmol, 2 mol%), ligand L6 (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%). The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiOt-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), dimethyl 2cycloheptylidenemalonate **1a** (45.2 mg, 0.2 mmol, 1 equiv), and (E)-methyl (3-(thiophen-2-yl)allyl) carbonate 2g (79.2 mg, 0.4 mmol, 2 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at 20 °C for 16 h. then the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. Et₂O was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with Et₂O and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ¹H NMR of this crude mixture as >20:1. The residue was recovered from the NMR tube, solvents were removed, and dried under high vacuum to form a yellow oil. This oil was then dissolved in 2 mL of toluene and stirred at 100 °C for 5 h. After the evaporation of toluene under reduced pressure, the desired product **5ag** was obtained after purification by silica gel flash chromatography (10% Et₂O in hexanes) as a inseparable mixture with **1a** (65.7 mg of mixture, contains 64.0 mg of **5ag** based on ¹H NMR, 92% yield). The analytic pure product was obtained by preparative HPLC (ACE 5 C18, 250 x 21 2mm id column; gradient, 15–100% MeCN in H₂O in 2 min, then 100% MeCN; flow rate = 10 mL/min; λ = 254 nm) as a colorless oil. 96% ee, [α]_D²⁵ –97.3 (*c* 1.82, CHCl₃); R_f = 0.2 (10% Et₂O in hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.09 (dt, *J* = 5.1, 0.9 Hz, 1H), 6.92 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.87 (d, *J* = 3.3 Hz, 1H), 6.50 (d, *J* = 15.5 Hz, 1H), 5.99 (ddd, *J* = 15.3, 8.1, 6.9 Hz, 1H), 3.75 (s, 3H), 3.75 (s, 3H), 3.15 – 3.08 (m, 1H), 3.00 – 2.84 (m, 1H), 2.42 – 2.36 (m, 1H), 2.28 – 2.10 (m, 1H), 2.10 – 1.90 (m, 3H), 1.90 – 1.65 (m, 2H), 1.54 – 1.37 (m, 1H), 1.34 – 1.23 (m, 2H), 1.17 – 0.94 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 166.4, 165.7, 142.8, 127.7, 127.3, 125.0, 124.7, 124.6, 123.5, 52.2, 52.1, 44.3, 39.7, 31.6, 30.8, 29.8, 29.6, 25.9. IR (Neat Film, NaCl) 2927, 2855, 1726, 1619, 1615, 1593, 1567, 1434, 1294, 1276, 1231, 1193, 1140, 1070, 1028, 964, 777 cm⁻¹; HRMS (MM: ESI-APCI+) calc'd for C₁₉H₂₅O₄S [M+H]⁺: 349.1468, found 349.1469. SFC conditions: 3% MeOH, 2.5 mL/min, Chiralpak IC column, λ = 254 nm, t_R (min): major = 11.55, minor = 12.69.

Dimethyl (S)-2-(2-cinnamylcyclohexylidene)malonate 5ba: The *General Procedure B* was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added [Ir(cod)Cl]₂ (2.7 mg, 0.004 mmol, 2 mol%), ligand **L6** (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%). The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiO*t*-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), dimethyl 2-cyclohexylidenemalonate **1b** (42.4 mg, 0.2 mmol, 1 equiv), and cinnamyl carbonate **2a** (76.8 mg, 0.4 mmol, 2.0 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at 20 °C for 12 h, the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. Et₂O was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with Et₂O and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ¹H NMR of this crude mixture as

>20:1. The residue was purified by silica gel flash chromatography (10% Et₂O in hexanes) to afford a colorless oil. This oil was then dissolved in 2 mL of toluene and stirred at 100 °C for 5 h. After the evaporation of toluene under reduced pressure, the desired product 5ba (54.3 mg, 83% yield) was obtained as a colorless oil after purification by silica gel flash chromatography (gradient elution, $10 \rightarrow 20\%$ Et₂O in hexanes). 91% ee, $[\alpha]_D^{25}$ -36.3 (c 0.73, CHCl₃); $R_f = 0.2$ (10% Et₂O in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.32 – 7.27 (m, 2H), 7.23 – 7.16 (m, 1H), 6.40 (d, J = 15.7 Hz, 1H), 6.14 (ddd, J = 15.6, 7.8, 6.8 Hz, 1H), 3.76 (s, 3H), 3.72 (s, 3H), 3.29 - 3.21 (m, 1H), 3.05 - 2.96 (m, 1H), 2.55 - 2.42 (m, 2H), 2.17 (td, J = 13.9, 4.9Hz, 1H), 1.98 – 1.91 (m, 1H), 1.91 – 1.84 (m, 1H), 1.74 – 1.56 (m, 3H), 1.53 – 1.39 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 166.2, 164.4, 137.7, 131.7, 128.6, 128.2, 127.2, 126.2, 122.2, 52.24, 52.18, 39.7, 35.6, 30.5, 27.9, 27.8, 20.3. IR (Neat Film, NaCl) 2933, 2858, 1727, 1626, 1599, 1495, 1449, 1434, 1365, 1336, 1296, 1271, 1251, 1216, 1143, 1103, 1085, 1058, 1016, 966, 743 cm⁻¹; HRMS (FAB+) m/z calc'd for C₂₀H₂₅O₄ [M+H]⁺: 329.1753, found 329.1750; SFC conditions: 15% IPA, 2.5 mL/min, Chiralcel OJ-H column, $\lambda = 254$ nm, t_R (min): minor = 2.87, major = 4.16.

Dimethyl (S)-2-(2-cinnamylcyclopentylidene)malonate 5ca: The *General Procedure B* was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added [Ir(cod)Cl]₂ (2.7 mg, 0.004 mmol, 2 mol%), ligand **L6** (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%). The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiO*t*-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), dimethyl 2-cyclopentylidenemalonate **1c** (40.1 mg, 0.2 mmol, 1 equiv), and cinnamyl carbonate **2a** (76.8 mg, 0.4 mmol, 2.0 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at 20 °C for 12 h. Then the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. Et₂O was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with Et₂O

and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ¹H NMR of this crude mixture as >20:1. The residue was purified by silica gel flash chromatography (10% Et₂O in hexanes) to afford a colorless oil. This oil was then dissolved in 2 mL of toluene and stirred at 100 °C for 5 h. After the evaporation of toluene under reduced pressure, the desired product 5ca (47.2 mg, 75% yield) was obtained as a colorless oil after purification by silica gel flash chromatography (gradient elution, $10 \rightarrow 20\%$ Et₂O in hexanes), 90% ee, $[\alpha]_{D}^{25}$ -49.9 (c 1.13, CHCl₃); R_f = 0.2 (10% Et₂O in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.33 (m, 2H), 7.31 – 7.28 (m, 2H), 7.23 – 7.18 (m, 1H), 6.38 (dt, J = 15.8, 1.3 Hz, 1H), 6.16 (ddd, J = 15.7, 8.2, 6.3 Hz, 1H), 3.78 (s, 3H), 3.75 (s, 3H), 3.36 – 3.32 (m, 1H), 2.82 – 2.74 (m, 1H), 2.74 – 2.60 (m, 1H), 2.46 – 2.40 (m, 1H), 2.18 - 2.11 (m, 1H), 1.87 - 1.68 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 172.3, 165.9, 137.5, 131.9, 131.9, 128.6, 128.2, 127.2, 126.2, 120.6, 52.2, 52.1, 44.6, 36.9, 33.5, 30.3, 22.8. IR (Neat Film, NaCl) 2951, 2877, 1725, 1634, 1598, 1494, 1435, 1317, 1274, 1232, 1194, 1173, 1061, 1013, 968, 743 cm⁻¹; HRMS (MM: ESI-APCI+) calc'd for C₁₉H₂₃O₄ [M+H]⁺: 315.1591, found 315.1600. SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 254$ nm, t_R (min): minor = 4.41, major = 4.79.

Dimethyl (*S*)-2-(3-cinnamyltetrahydro-4*H*-pyran-4-ylidene)malonate 5da: The *General Procedure B* was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[Ir(cod)Cl]_2$ (2.7 mg, 0.004 mmol, 2 mol%), ligand L6 (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%). The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiO*t*-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), dimethyl 2-(tetrahydro-4*H*-pyran-4-ylidene)malonate 1d (42.8 mg, 0.2 mmol, 1 equiv), and cinnamyl carbonate 2a (76.8 mg, 0.4 mmol, 2.0 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at 20 °C for 12 h,

until 2-cyclopentylidenemalonate 1d was fully consumed, as indicated by TLC or UHPLC-MS analysis. Upon completion of the reaction the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. Et₂O was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with Et₂O and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ¹H NMR of this crude mixture as >20:1. The residue was purified by silica gel flash chromatography (10% Et₂O) in hexanes) to afford a colorless oil. This oil was then dissolved in 2 mL of toluene and stirred at 100 °C for 5 h. After the evaporation of toluene under reduced pressure, the desired product 5da (60.3 mg, 91% yield) was obtained as a colorless oil after purification by silica gel flash chromatography (gradient elution, $10 \rightarrow 20\%$ Et₂O in hexanes). 94% ee, $[\alpha]_D^{25}$ -52.9 (c 1.26, CHCl₃); $R_f = 0.2$ (10% Et₂O in hexanes): ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.32 (m, 2H), 7.30 – 7.27 (m, 2H), 7.24 – 7.14 (m, 1H), 6.46 (dt, J = 15.7, 1.3 Hz, 1H), 6.16 (ddd, J = 15.7, 8.2, 6.6 Hz, 1H), 4.11 (dd, J = 11.1, 6.1 Hz, 1H), 3.99 (dt, J = 11.6, 1.3 Hz, 1H), 3.77 (s, 3H), 3.72 (s, 3H), 3.53 (dd, J = 11.6, 2.8 Hz, 1H), 3.47 (ddd, J = 12.5, 11.1, 2.5 Hz, 1H), 3.09 (t, J = 7.3 Hz, 1H), 2.94 (d, J =14.8 Hz, 1H), 2.68 (dtd, J = 13.7, 8.4, 1.2 Hz, 1H), 2.61 – 2.52 (m, 2H); ¹³C NMR (125) MHz, CDCl₃) δ 165.7, 158.8, 137.4, 132.6, 128.6, 127.3, 127.2, 126.2, 123.3, 70.2, 68.4, 52.4, 52.3, 41.1, 35.0, 29.0. IR (Neat Film, NaCl) 2952, 2847, 1725, 1633, 1495, 1434, 1384, 1299, 1245, 1228, 1102, 1067, 1047, 1031, 967 cm⁻¹; HRMS (MM: ESI-APCI+) calc'd for C₁₉H₂₃O₅ [M+H]⁺: 331.1540, found 331.1544. SFC conditions: 15% IPA, 2.5 mL/min, Chiralcel OJ-H column, $\lambda = 254$ nm, t_R (min): minor = 2.79, major = 4.44.

Dimethyl (*S*)-2-(3-cinnamyltetrahydro-4*H*-thiopyran-4-ylidene)malonate 5ea: The *General Procedure A* was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[Ir(cod)Cl]_2$ (2.7 mg, 0.004 mmol, 2 mol%), ligand L6 (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%). The vial was then charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a light brown

solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiOt-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), dimethyl 2-(tetrahydro-4Hthiopyran-4-ylidene)malonate 1e (46.0 mg, 0.20 mmol, 1.0 equiv), cinnamyl carbonate 2a (76.8 mg, 0.4 mmol, 2.0 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at 20 °C for 12 h, the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. Et₂O was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with Et₂O and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ¹H NMR of this crude mixture as >20:1. The mixture was recovered from NMR tube, concentrated, and dried under vacuum. Then this crude mixture was dissolved in 2 mL of toluene and stirred at 100 °C for 5 h. After the evaporation of toluene under reduced pressure, the desired product 5ae (38.7 mg, 56% yield) was obtained as a colorless oil after purification by silica gel flash chromatography (25% Et₂O in hexanes). 93% ee, $[\alpha]_{D}^{25}$ -50.9 (c 0.67, CHCl₃); R_f = 0.4 (25% Et₂O in hexanes); ¹H NMR (400 MHz, $CDCl_3$) δ 7.43 – 7.29 (m, 4H), 7.26 – 7.19 (m, 1H), 6.50 (dd, J = 15.8, 1.3 Hz, 1H), 6.14 (ddd, J = 15.7, 8.1, 6.6 Hz, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 3.45 (ddt, J = 9.3, 6.5, 3.4 Hz)1H), 3.28 (dt, J = 13.8, 3.2 Hz, 1H), 3.02 (dd, J = 13.9, 3.5 Hz, 1H), 2.96 – 2.79 (m, 2H), 2.79 - 2.62 (m, 3H), 2.54 (ddd, J = 14.0, 12.4, 4.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 165.7, 160.5, 137.4, 132.7, 128.6, 127.3, 127.0, 126.2, 124.1, 52.4, 4 52.43, 39.6, 34.7, 33.9, 30.4, 29.0. IR (Neat Film, NaCl) 3024, 2950, 2905, 2841, 1727, 1626, 1599, 1494, 1434, 1255, 1231, 1208, 1146, 1061, 1022, 967, 930, 745 cm⁻¹; HRMS (MM: ESI-APCI+) calc'd for $C_{19}H_{23}O_4S [M+H]^+$: 347.1312, found 347.1303. SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak IC column, $\lambda = 254$ nm, t_R (min): major = 2.75, minor = 2.92. MeO₂C、 CO₂Me

Dimethyl (S)-2-(1-benzyl-3-cinnamylpiperidin-4-ylidene)malonate 5fa: The *General Procedure A* was followed. To a 2 dram scintillation vial equipped with a magnetic stirring bar was added $[Ir(cod)Cl]_2$ (2.7 mg, 0.004 mmol, 2 mol%), ligand L6 (4.9 mg, 0.008 mmol, 4 mol%), and TBD (2.8 mg, 0.02 mmol, 10 mol%). The vial was then

charged with THF (1 mL) and stirred at 20 °C for 10 min, generating a light brown solution. To another 2 dram scintillation vial equipped with a magnetic stirring bar was charged with LiOt-Bu (19.2 mg, 0.24 mmol, 1.2 equiv), dimethyl 2-(1-benzylpiperidin-4vlidene)malonate 1f (60.6 mg, 0.20 mmol, 1.0 equiv), cinnamyl carbonate 2a (76.8 mg, 0.4 mmol, 2.0 equiv), and 1 mL of THF. After the transformation of above prepared catalyst solution by syringe, the vial was sealed and stirred at 20 °C for 12 h. Then the vial was removed from the glovebox, uncapped, and THF was evaporated under reduced pressure. EtOAc was added to the crude mixture and the resulting precipitate was filtered through a silica pad, rinsed with EtOAc and the filtrate was concentrated under reduced pressure. The regioselectivity (branched product to linear product: b:l) was determined by ¹H NMR of this crude mixture as >20:1. The mixture was recovered from NMR tube. concentrated, and dried under vacuum. Then this crude mixture was dissolved in 2 mL of toluene and stirred at 100 °C for 5 h. After the evaporation of toluene under reduced pressure, the desired product 5fa (79.2 mg, 95% yield) was obtained as a yellow oil after purification by silica gel flash chromatography (15% EtOAc in hexanes). 95% ee. $\left[\alpha\right]_{D}^{25}$ -26.1 (c 1.18, CHCl₃); $R_f = 0.2$ (25% Et₂O in hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.29 (m, 4H), 7.29 - 7.22 (m, 5H), 7.21 - 7.15 (m, 1H), 6.31 (dt, J = 15.8, 1.3 Hz, 1H), 6.06 (ddd, J = 15.4, 8.1, 6.8 Hz, 1H), 3.76 (s, 3H), 3.71 (s, 3H), 3.57 (d, J = 13.1 Hz, 1H), 3.37 (d, J = 13.1 Hz, 1H), 3.14 - 2.94 (m, 3H), 2.91 (dt, J = 11.6, 2.2 Hz, 1H), 2.80-2.67 (m, 1H), 2.62 - 2.45 (m, 2H), 2.12 (ddd, J = 23.7, 11.2, 3.1 Hz, 2H); 13 C NMR (100 MHz, CDCl₃) δ 166.0, 165.9, 161.2, 138.7, 137.6, 132.0, 129.0, 128.5, 128.4, 128.0, 127.2, 127.1, 126.2, 122.6, 62.5, 55.8, 54.4, 52.3, 52.2, 40.8, 35.8, 28.5. IR (Neat Film, NaCl) 3026, 2949, 2802, 1737, 1732, 1722, 1716, 1633, 1494, 1434, 1366, 1348, 1300, 1226, 1066, 1038, 1009, 966, 745 cm⁻¹; HRMS (MM: ESI-APCI+) calc'd for C₂₆H₃₀NO₄ [M+H]⁺: 420.2169, found 420.2172. SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak IC column, $\lambda = 254$ nm, t_R (min): major = 6.64, minor = 7.42.

General Procedure for the Synthesis of Cyclic Alkylidene Malonates.

A known procedure was followed with a slight modification:⁴ A flame-dried flask containing 25 mL of THF chilled with an ice bath was treated with TiCl₄ (13.5 mmol, 3 equiv.) slowly via syringe. To the resulting yellow solution was added dropwise a mixture of ketone (4.5 mmol), dimethyl malonate (13.5 mmol, 3 equiv), pyridine (13.5 mmol, 3 equiv) in THF (8 mL) and the reaction mixture was allowed to slowly warm to room temperature. Upon completion, as determined by TLC, the reaction was quenched by slow addition of water until a homogenous solution was obtained. THF was then removed *in vacuo* and the resulting aqueous solution was extracted with EtOAc. The combined organic layers were sequentially washed with 1 M HCl and brine, and then dried over Na₂SO₄. The crude residue was purified by silica gel flash chromatography to afford the desired product.

MeO₂C CO₂Me

Dimethyl 2-cycloheptylidenemalonate (1a).

Colorless oil, 45% yield, $R_f = 0.4$ (15% EtOAc in hexanes), purified by silica gel flash chromatography (6% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 3.76 (s, 6H), 2.65 – 2.58 (m, 4H), 1.70 (dt, J = 4.3, 2.3 Hz, 4H), 1.55 – 1.51 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 166.1, 165.2, 123.4, 52.0, 34.1, 28.9, 26.6; IR (Neat Film, NaCl) 2926.3, 2856.8, 1729.0, 1622.0, 1435.3, 1275.5, 1234.1, 1194.3, 1169.8, 1150.3, 1103.5, 1074.1, 1037.7, 1023.5, 941.5, 749.6 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₂H₁₉O₄ [M+H]⁺: 227.1283, found 227.1273.

Dimethyl 2-(tetrahydro-4*H*-pyran-4-ylidene)malonate (1d).

Colorless oil, 42% yield $R_f = 0.2$ (15% EtOAc in hexanes), purified by silica gel flash chromatography (10% EtOAc in hexanes); ¹H NMR (300 MHz, CDCl₃) δ 3.80 – 3.76 (m, 10H), 2.68 (t, J = 5.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 156.4, 122.5, 68.3, 52.3, 33.0; IR (Neat Film, NaCl) 2955.2, 2914.9, 2849.5, 1726.3, 1639.6, 1634.0, 1435.2, 1382.8, 1357.7, 1295.0, 1259.1, 1242.4, 1205.3, 1097.7, 1061.6, 1031.0, 1005.6, 982.5, 947.1, 912.4, 838.8, 765.5 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₀H₁₄O₅ [M+H]⁺: 215.0914, found 215.0907.

Dimethyl 2-(tetrahydro-4H-thiopyran-4-ylidene)malonate (1e).

Colorless oil, 83% yield $R_f = 0.4$ (25% Et₂O in hexanes), purified by silica gel flash chromatography (25% Et₂O in hexanes); ¹H NMR (400 MHz, CDCl₃) δ 3.76 (d, J = 0.7 Hz, 6H), 2.96 – 2.83 (m, 4H), 2.83 – 2.70 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 158.5, 123.4, 52.4, 34.5, 30.8; IR (Neat Film, NaCl) 3000, 2951, 2915, 2841, 1725, 1633, 1434, 1321, 1294, 1256, 1228, 1203, 1168, 1060, 1031, 1007, 973, 942 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₀H₁₅SO₄ [M+H]⁺: 231.0686, found 231.0684.

Dimethyl 2-(1-benzylpiperidin-4-ylidene)malonate (1f)

Yellow oil, 56% yield $R_f = 0.2$ (25% EtOAc in hexanes), purified by silica gel flash chromatography (25% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.21 (m, 5H), 3.75 (s, 6H), 3.52 (s, 2H), 2.67 (d, J = 5.7 Hz, 4H), 2.56 (t, J = 5.6 Hz, 4H); ¹³C

NMR (100 MHz, CDCl₃) δ 166.0, 158.9, 138.1, 129.2, 128.4, 127.3, 122.1, 62.5, 54.0, 52.3, 31.9. IR (Neat Film, NaCl) 2951, 1907, 2801, 2760, 1732, 1639, 1634, 1494, 1435, 1365, 1347, 1295, 1254, 1231, 1208, 1144, 1063, 1033, 997 cm⁻¹; HRMS (MM: ESI-APCI+) *m*/*z* calc'd for C₁₇H₂₂NO₄ [M+H]⁺: 304.1543, found 304.1545.

Determination of the Absolute Configuration of 5aa.

The absolute configuration of 5aa was assigned by the X-ray analysis of reduced product **S5aa**.

To a flame-dried flask was added malonate 5aa (258.0 mg, 0.75 mmol) and CH₂Cl₂ (30 mL). The solution was cooled to -78 °C and DIBAL (neat, 0.8 mL, 4.5 mmol, 6 equiv) was added slowly via syringe. The mixture was stirred at -78 °C for 1 h and then room temperature overnight. The reaction was guenched with saturated Rochelle's salt at 0 °C, and stirred until two clear phases were obtained. The aqueous layer was partitioned with 60 mL of EtOAc, and the combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The crude mixture was then filtered though a silica pad, and the resulting solid obtained was purified by recrystallization with Et₂O/hexanes, affording the desired product S5aa (163.2 mg, 76% yield) as colorless crystals. >99% ee, $\left[\alpha\right]_{D}^{25}$ -85.2 (c 1.31, CHCl₃); ¹H NMR (400 MHz, $CDCl_3$) δ 7.39 – 7.28 (m, 4H), 7.25 – 7.14 (m, 1H), 6.36 (d, J = 15.9 Hz, 1H), 6.19 (dt, J = 15.8, 7.4 Hz, 1H), 4.51 - 4.27 (m, 4H), 2.92 - 2.85 (m, 1H), 2.53 (ddd, J = 12.6, 6.0, 11.9 Hz, 1H), 2.35 – 2.14 (m, 2H), 2.09 – 1.86 (m, 5H), 1.86 – 1.68 (m, 2H), 1.39 – 1.03 (m. 4H): ¹³C NMR (100 MHz, CDCl₃) δ 145.6, 137.5, 132.5, 131.4, 128.8, 128.7, 127.2, 126.1, 62.5, 61.8, 41.5, 40.0, 33.1, 31.1, 30.6, 26.8, 26.0; IR (Neat Film, NaCl) 3349, 2921, 2851, 1643, 1597, 1493, 1447, 1352, 1231, 1046, 998, 965, 745, 692 cm⁻¹; HRMS (MM: ESI-APCI+) m/z calc'd for C₁₉H₂₅O [M-H₂O+H]⁺: 269.1900, found 269.1896; SFC conditions: 20% IPA, 2.5 mL/min, Chiralpak IC column, $\lambda = 254$ nm, t_R (min): minor = 6.98, major = 8.97.

General Procedure for the Ir-Catalyzed Asymmetric Allylic Alkylation of Endocyclic α , β -Unsaturated β -Ketoesters

<u>Please note</u> that the absolute configuration was determined only for the major isomer of compound 7**ca** (vide infra). The absolute configuration for all other products 7 has been inferred by analogy. For respective SFC conditions, please refer to Table S2. Isolated yields are given in Scheme 4 (see manuscript).

In a nitrogen-filled glove box, $[Ir(cod)Cl]_2$ (2.69 mg, 0.004 mmol, 2 mol %), ligand L1 (3.71 mg, 0.008 mmol, 4 mol %), and TBD (2.78 mg, 0.02 mmol, 10 mol %) were added to a 2 dram scintillation vial equipped with a magnetic stirring bar. The vial was then charged with THF (1 mL) and stirred at 25 °C for 10 min. To a 20 mL scintillation vial was added α , β -unsaturated β -ketoester (0.4 mmol, 2.0 eq), cinnamyl carbonate **2a** (38.4 mg, 0.2 mmol, 1.0 equiv) and 1 mL of THF, then the above pre-formed catalyst solution was transferred to this vial. The vial was sealed and stirred at 25 °C for 1 day. The reaction mixture was filtered through a pad of silica gel, rinsed with hexane/ethyl acetate (5:1, v/v), and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography and preparative HPLC.

Methyl (S)-7-oxo-1-((R)-1-phenylallyl)cyclohept-2-ene-1-carboxylate (7aa) and methyl (R)-7-oxo-1-((R)-1-phenylallyl)cyclohept-2-ene-1-carboxylate (7aa').

Products **7aa** and **7aa**' were isolated by silica gel chromatography (3% EtOAc in hexanes) as a mixture of diastereomers (2:1), where were separated by preparative HPLC (3% EtOAc in hexanes).

The major diastereomer was isolated as a colorless oil, 95% ee, $[\alpha]_D^{25}$ –15.4 (*c* 1.79, CHCl₃); $R_f = 0.2$ (9% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 7.25 – 7.15 (m, 3H), 6.22 (ddd, J = 16.7, 10.3, 9.1 Hz, 1H), 6.04 – 5.91 (m, 2H), 5.15–5.04 (m, 2H), 4.39 (d, J = 9.1 Hz, 1H), 3.68 (s, 3H), 2.71 (dt, J = 12.6, 7.5 Hz, 1H), 2.28 (dt, J = 12.5, 6.2 Hz, 1H), 1.98 – 1.87 (m, 1H), 1.73 – 1.61 (m, 2H), 1.48 – 1.37 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 205.8, 170.4, 139.1, 137.0, 132.3, 130.5, 127.8, 127.0, 126.1, 117.8, 71.3, 54.3, 52.9, 40.4, 25.3, 22.9; IR (Neat Film, NaCl) 3030, 2948, 2359, 2341, 1738, 1716, 1493, 1453, 1433, 1296, 1226, 1194, 1123, 1056 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₈H₂₁O₃ [M+H]⁺: 285.1491, found 285.1496; SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): minor = 4.99, major = 7.08.

The minor diastereomer was isolated as a colorless oil, 88% ee, $[\alpha]_D^{25}$ –75.1 (*c* 0.61, CHCl₃); $R_f = 0.2$ (9% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.16 (m, 5H), 6.20 (ddd, J = 17.0, 10.2, 8.4 Hz, 1H), 6.12 – 6.01 (m, 2H), 5.22 – 5.10 (m, 2H), 4.38 (d, J = 8.5 Hz, 1H), 3.50 (s, 3H), 2.79 (ddd, J = 12.7, 8.8, 7.2 Hz, 1H), 2.39 (ddd, J = 12.7, 6.5, 5.1 Hz, 1H), 2.16 – 1.98 (m, 2H), 1.96–1.85 (m, 1H), 1.85 – 1.71 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 205.7, 170.0, 139.5, 137.1, 131.7, 129.6, 128.2, 127.2, 126.2, 118.5, 70.6, 53.3, 52.7, 40.0, 25.2, 23.5; IR (Neat Film, NaCl) 3030, 2948, 1737, 1719, 1493, 1453, 1434, 1296, 1230, 1194, 1121 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₈H₂₁O₃

 $[M+H]^+$: 285.1491, found 285.1498; SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 5.62, minor = 7.98.

Methyl (S,Z)-8-oxo-1-((R)-1-phenylallyl)cyclooct-2-ene-1-carboxylate (7ba) and methyl (R,Z)-8-oxo-1-((R)-1-phenylallyl)cyclooct-2-ene-1-carboxylate (7ba').

Products **7ba** and **7ba**' were isolated by silica gel chromatography (2% EtOAc in hexanes) as a mixture of diastereomers (3:1), where were separated by preparative HPLC (3% EtOAc in hexanes).

The major diastereomer was isolated as a colorless oil, 90% ee, $[\alpha]_D^{25}$ +59.3 (*c* 1.60, CHCl₃); $R_f = 0.4$ (9% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.38 (m, 2H), 7.24 – 7.18 (m, 2H), 7.18 – 7.11 (m, 1H), 6.15 (dt, *J* = 16.8, 10.1 Hz, 1H), 6.08 (dd, *J* = 11.4, 1.0 Hz, 1H), 5.87 – 5.76 (m, 1H), 5.14 – 5.03 (m, 2H), 4.46 (d, *J* = 10.1 Hz, 1H), 3.68 (s, 3H), 2.63 – 2.52 (m, 1H), 2.23 – 2.13 (m, 1H), 1.80 – 1.69 (m, 2H), 1.49 – 1.37 (m, 2H), 1.20 – 1.07 (m, 1H), 0.66 – 0.55 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 208.5, 169.8, 139.1, 137.4, 135.4, 131.0, 127.5, 126.7, 124.7, 117.2, 70.8, 53.7, 53.0, 39.0, 27.6, 25.4, 24.8; IR (Neat Film, NaCl) 3029, 2931, 2859, 1740, 1712, 1492, 1453, 1432, 1331, 1224, 1176, 1123, 1061 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₉H₂₃O₃ [M+H]⁺: 299.1647, found 299.1645; SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak IA column, $\lambda = 210$ nm, t_R (min): minor = 4.52, major = 6.36.

The minor diastereomer was isolated as a colorless oil, 77% ee, $[\alpha]_D^{25}$ –114.2 (*c* 0.52, CHCl₃); $R_f = 0.4$ (9% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.15 (m, 5H), 6.17 – 6.02 (m, 2H), 6.01 – 5.91 (m, 1H), 5.29 (ddd, *J* = 17.0, 1.9, 0.9 Hz, 1H), 5.11 (ddd, *J* = 10.1, 1.8, 0.7 Hz, 1H), 4.43 (d, *J* = 8.9 Hz, 1H), 3.49 (s, 3H), 2.66 (td, *J* = 12.2, 2.5 Hz, 1H), 2.25 (ddd, *J* = 12.3, 7.0, 2.6 Hz, 1H), 2.05 – 1.81 (m, 3H), 1.74 – 1.53 (m,

2H), 1.31 - 1.21 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 208.2, 169.5, 140.0, 137.0, 134.0, 129.3, 128.3, 127.1, 124.9, 118.1, 69.5, 52.8, 52.7, 39.2, 27.6, 26.0, 25.3; IR (Neat Film, NaCl) 3028, 2931, 2859, 1740, 1715, 1491, 1453, 1432, 1228, 1177, 1432, 1228, 1177, 1133, 1059 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₉H₂₃O₃ [M+H]⁺: 299.1647, found 299.1654; SFC conditions: 5% IPA, 2.5 mL/min, Chiralpak IA column, $\lambda = 210$ nm, t_R (min): major = 5.79, minor = 7.41.

Ethyl (S)-6-oxo-1-((R)-1-phenylallyl)cyclohex-2-ene-1-carboxylate (7ca) and Ethyl (R)-6-oxo-1-((R)-1-phenylallyl)cyclohex-2-ene-1-carboxylate (7ca').

Products **7ca** and **7ca**' were isolated by silica gel chromatography (3% EtOAc in hexanes) as a mixture of diastereomers (5:1), where were separated by preparative HPLC (4% EtOAc in hexanes).

The major diastereomer was isolated as a colorless oil, 98% ee, $[\alpha]_D^{25}$ –35.8 (*c* 0.71, CHCl₃); $R_f = 0.2$ (9% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.14 (m, 5H), 6.25 – 6.16 (m, 1H), 6.17 – 6.11 (m, 1H), 6.05 (ddd, *J* = 10.1, 1.9, 1.3 Hz, 1H), 5.23 – 5.10 (m, 2H), 4.49 (dt, *J* = 8.2, 1.2 Hz, 1H), 4.16 (qd, *J* = 7.1, 2.2 Hz, 2H), 2.37 – 2.23 (m, 2H), 1.94 – 1.76 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 205.9, 169.3, 138.8, 136.4, 130.5, 130.3, 128.1, 127.1, 126.1, 118.5, 65.6, 62.0, 54.4, 38.3, 24.5, 14.2; IR (Neat Film, NaCl) 3033, 2980, 1743, 1719, 1493, 1454, 1416, 1391, 1365, 1342, 1299, 1213, 1165, 1130, 1096, 1044, 1016 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₈H₂₁O₃ [M+H]⁺: 285.1485, found 285.1482; SFC conditions: 2% IPA, 3.0 mL/min, Chiralpak IA column, $\lambda = 210$ nm, t_R (min): minor = 6.82, major = 13.26.

The minor diastereomer was isolated as a colorless oil, 91% ee, $[\alpha]_D^{25}$ +28.9 (*c* 0.30, CHCl₃); $R_f = 0.2$ (9% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.16 (m,

5H), 6.29 – 6.18 (m, 1H), 6.15 – 6.07 (m, 1H), 5.94 (ddd, J = 10.0, 2.4, 1.0 Hz, 1H), 5.15 – 5.07 (m, 2H), 4.34 (d, J = 9.0 Hz, 1H), 4.03 (q, J = 7.1 Hz, 2H), 2.60 – 2.49 (m, 1H), 2.47 – 2.34 (m, 2H), 2.29–2.17 (m, 1H), 1.14 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 205.6, 169.2, 139.2, 136.8, 130.0, 129.7, 128.2, 127.4, 127.2, 118.2, 65.0, 61.9, 54.5, 39.2, 24.8, 14.0; IR (Neat Film, NaCl) 3032, 2980, 2931, 1736, 1719, 1637, 1601, 1493, 1453, 1444, 1419, 1389, 1365, 1342, 1298, 1218, 1166, 1118, 1097, 1045, 1018 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₈H₂₁O₃ [M+H]⁺: 285.1485, found 285.1480; SFC conditions: 2% IPA, 3.0 mL/min, Chiralpak IA column, $\lambda = 210$ nm, t_R (min): major = 6.95, minor = 11.43.

Methyl (*R*)-1-benzyl-2-oxo-3-((*R*)-1-phenylallyl)-2,3,6,7-tetrahydro-1*H*-azepine-3carboxylate (7da) and methyl (*S*)-1-benzyl-2-oxo-3-((*R*)-1-phenylallyl)-2,3,6,7tetrahydro-1*H*-azepine-3-carboxylate (7da').

Products **7da** and **7da**' were isolated by silica gel chromatography (3% EtOAc in hexanes) as a mixture of diastereomers (2:1), where were separated by preparative HPLC (12% EtOAc in hexanes).

The major diastereomer was isolated as a colorless oil, 79% ee, $[\alpha]_D^{25}$ –14.6 (*c* 0.19, CHCl₃); R_f = 0.4 (25% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.19 (m, 10H), 6.27 (ddd, *J* = 17.3, 10.6, 5.4 Hz, 1H), 5.99 – 5.90 (m, 2H), 5.24 (dt, *J* = 10.6, 1.7 Hz, 1H), 5.09 (d, *J* = 14.9 Hz, 1H), 5.02 (dt, *J* = 17.3, 1.7 Hz, 1H), 4.74 (dt, *J* = 5.4, 1.9 Hz, 1H), 4.34 (d, *J* = 14.9 Hz, 1H), 3.54 – 3.44 (m, 1H), 3.39 (s, 3H), 3.09 – 3.00 (m, 1H), 2.26 – 2.07 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 170.7, 139.3, 138.9, 137.7, 132.0, 130.4, 128.7, 128.3, 127.9, 127.5, 127.4, 124.7, 118.1, 62.3, 54.7, 52.4, 51.4, 44.0, 28.3; IR (Neat Film, NaCl) 3029, 2048, 1737, 1728, 1656, 1652, 1495, 1480, 1431, 1416, 1357, 1242, 1227, 1164, 1045,1001 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₄H₂₆NO₃ [M+H]⁺: 376.1907, found 376.1917; SFC conditions: 10% MeCN, 2.5 mL/min, Chiralcel OD-H column, λ = 210 nm, t_R (min): minor = 13.74, major = 16.85.

The minor diastereomer was isolated as a colorless oil, 62% ee, $[\alpha]_D^{25}$ –42.3 (*c* 0.12, CHCl₃); R_f = 0.4 (25% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.42 (m, 2H), 7.36 – 7.16 (m, 8H), 6.40 (ddd, *J* = 16.9, 10.1, 9.1 Hz, 1H), 5.88 (dddd, *J* = 11.8, 4.7, 3.1, 1.3 Hz, 1H), 5.73 (dt, *J* = 11.9, 2.2 Hz, 1H), 5.23 – 5.05 (m, 2H), 4.99 (d, *J* = 14.8 Hz, 1H), 4.45 (d, *J* = 9.1 Hz, 1H), 4.32 (d, *J* = 14.9 Hz, 1H), 3.63 (s, 3H), 3.51 – 3.42 (m, 1H), 3.10 – 3.02 (m, 1H), 2.22 – 2.04 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 170.3, 140.2, 137.7, 137.7, 131.1, 130.3, 128.7, 128.0, 127.9, 127.5, 126.7, 126.2, 118.2, 63.1, 56.6, 52.7, 51.4, 44.2, 28.2; IR (Neat Film, NaCl) 3028, 2948, 1732, 1656, 1652, 1495, 1480, 1429, 1417, 1357, 1241, 1226, 1163, 1044, 1002 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₂₄H₂₆NO₃ [M+H]⁺: 376.1907, found 376.1915; SFC conditions: 10% MeCN, 2.5 mL/min, Chiralcel OD-H column, λ = 210 nm, t_R (min): major = 12.34, minor = 15.02.

Methyl (S)-7-oxo-1-((R)-1-(p-tolyl)allyl)cyclohept-2-ene-1-carboxylate (7ab) and methyl (R)-7-oxo-1-((R)-1-(p-tolyl)allyl)cyclohept-2-ene-1-carboxylate (7ab').

Products **7ab** and **7ab**' were isolated by silica gel chromatography (2% EtOAc in hexanes) as a mixture of diastereomers (1.2:1), where were separated by preparative HPLC (3% EtOAc in hexanes).

The major diastereomer was isolated as a colorless oil, 95% ee, $[\alpha]_D^{25}$ –17.5 (*c* 0.195, CHCl₃); $R_f = 0.3$ (9% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, *J* = 8.1 Hz, 2H), 7.03 (d, *J* = 7.7 Hz, 2H), 6.21 (ddd, *J* = 16.7, 10.4, 9.1 Hz, 1H), 6.00 – 5.90 (m, 2H), 5.13 – 5.04 (m, 2H), 4.33 (d, *J* = 9.0 Hz, 1H), 3.69 (s, 3H), 2.71 (dt, *J* = 12.7, 7.3 Hz, 1H), 2.36 – 2.25 (m, 4H), 2.01 – 1.89 (m, 1H), 1.73 – 1.62 (m, 2H), 1.56 – 1.43 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 205.9, 170.5, 137.2, 136.6, 136.1, 132.3, 130.2,

128.6, 126.2, 117.6, 71.1, 54.0, 52.9, 40.6, 25.6, 22.9, 21.2; IR (Neat Film, NaCl) 2948, 1738, 1716, 1514, 1435, 1225, 1123 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₉H₂₃O₃ $[M+H]^+$: 299.1647, found 299.1655; SFC conditions: 8% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): minor = 4.13, major = 4.50.

The minor diastereomer was isolated as a colorless oil, 91% ee, $[\alpha]_D^{25}$ –76.0 (*c* 0.17, CHCl₃); $R_f = 0.3$ (9% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.13 – 7.00 (m, 4H), 6.17 (ddd, *J* = 17.0, 10.2, 8.5 Hz, 1H), 6.11 – 6.00 (m, 2H), 5.17 (ddd, *J* = 17.0, 1.8, 1.0 Hz, 1H), 5.12 (ddd, *J* = 10.2, 1.8, 0.8 Hz, 1H), 4.35 (d, *J* = 8.5 Hz, 1H), 3.52 (s, 3H), 2.79 (ddd, *J* = 12.7, 8.7, 7.1 Hz, 1H), 2.39 (ddd, *J* = 12.6, 6.4, 5.2 Hz, 1H), 2.30 (s, 3H), 2.17 – 2.00 (m, 2H), 1.96 – 1.85 (m, 1H), 1.85 – 1.73 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 205.8, 170.0, 137.2, 136.7, 136.4, 131.6, 129.3, 129.0, 126.3, 118.2, 70.6, 52.9, 52.7, 40.0, 25.2, 23.5, 21.2; IR (Neat Film, NaCl) 2948, 1736, 1720, 1716, 1513, 1435, 1230, 1194, 1123 cm⁻¹; HRMS (FAB+) *m*/*z* calc'd for C₁₉H₂₃O₃ [M+H]⁺: 299.1647, found 299.1640; SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): minor = 3.43, major = 4.49.

Products **7ba** and **7ba'** were isolated by silica gel chromatography (2% EtOAc in hexanes) as a mixture of diastereomers (2:1), where were separated by preparative HPLC (7% EtOAc in hexanes).

The major diastereomer was isolated as a colorless oil, 91% ee, $[\alpha]_D^{25}$ –14.9 (*c* 0.29, CHCl₃); $R_f = 0.3$ (17% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.14 (t, *J* = 8.1 Hz, 1H), 6.93 – 6.87 (m, 2H), 6.74 (ddd, *J* = 8.2, 2.5, 1.1 Hz, 1H), 6.26 – 6.14 (m, 1H), 6.02 – 5.91 (m, 2H), 5.15 – 5.06 (m, 2H), 4.35 (d, *J* = 9.1 Hz, 1H), 3.78 (s, 3H), 3.69 (s, 3H), 2.71 (dt, *J* = 12.7, 7.3 Hz, 1H), 2.30 (dt, *J* = 12.6, 6.2 Hz, 1H), 2.04 – 1.92 (m, 1H), 1.74 – 1.63 (m, 2H), 1.56 – 1.47 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 205.7, 170.4, 159.0, 140.7, 136.9, 132.3, 128.8, 126.2, 122.8, 117.9, 116.2, 112.4, 71.1, 55.3, 54.4, 52.9, 40.5, 25.6, 22.8; IR (Neat Film, NaCl) 2949, 1738, 1716, 1599, 1583, 1489, 1455, 1435, 1225, 1050 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₉H₂₃O₄ [M+H]⁺: 315.1596, found 315.1592; SFC conditions: 8% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): minor = 4.28, major = 4.75.

The minor diastereomer was isolated as a colorless oil, 81% ee, $[\alpha]_D^{25}$ –64.5 (*c* 0.135, CHCl₃); R_f = 0.3 (17% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.17 (t, *J* = 7.9 Hz, 1H), 6.84 – 6.71 (m, 3H), 6.15 (ddd, *J* = 17.0, 10.2, 8.6 Hz, 1H), 6.11 – 6.02 (m, 2H), 5.21 (ddd, *J* = 17.1, 1.8, 1.0 Hz, 1H), 5.13 (ddd, *J* = 10.2, 1.7, 0.8 Hz, 1H), 4.37 (d, *J* = 8.6 Hz, 1H), 3.78 (s, 3H), 3.53 (s, 3H), 2.79 (ddd, *J* = 12.5, 8.8, 7.3 Hz, 1H), 2.39 (ddd, *J* = 12.4, 6.6, 4.9 Hz, 1H), 2.17 – 2.01 (m, 2H), 1.98 – 1.86 (m, 1H), 1.86 – 1.72 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 205.7, 169.9, 159.3, 141.1, 136.8, 131.5, 129.2, 126.3, 121.8, 118.5, 115.6, 112.3, 70.7, 55.3, 53.2, 52.7, 39.8, 25.1, 23.6; IR (Neat Film, NaCl) 2949, 1735, 1719, 1599, 1583, 1491, 1453, 1434, 1230, 1049 cm⁻¹; HRMS (FAB+) *m*/z calc'd for C₁₉H₂₃O₄ [M+H]⁺: 315.1596, found 315.1603; SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak IC column, λ = 210 nm, t_R (min): minor = 5.40, major = 5.99.

Methyl (S)-1-((R)-1-(3-chlorophenyl)allyl)-7-oxocyclohept-2-ene-1-carboxylate (7ae) and methyl (R)-1-((R)-1-(3-chlorophenyl)allyl)-7-oxocyclohept-2-ene-1-carboxylate (7ae')

Products **7ae** and **7ae'** were isolated by silica gel chromatography (2% EtOAc in hexanes) as a mixture of diastereomers (3:1), where were separated by preparative HPLC (3.5% EtOAc in hexanes).

The major diastereomer was isolated as a colorless oil, 91% ee, $[\alpha]_D^{25}$ –4.9 (*c* 0.325, CHCl₃); $R_f = 0.4$ (17% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.28 (m, 1H), 7.25 – 7.20 (m, 1H), 7.18 – 7.14 (m, 2H), 6.15 (ddd, *J* = 16.8, 10.2, 9.2 Hz, 1H), 6.05–5.93 (m, 2H), 5.16 – 5.06 (m, 2H), 4.35 (d, *J* = 9.2 Hz, 1H), 3.69 (s, 3H), 2.74 (ddd, *J* = 12.6, 8.0, 7.4 Hz, 1H), 2.31 (dt, *J* = 12.5, 6.0 Hz, 1H), 2.01 – 1.87 (m, 1H), 1.75 – 1.63 (m, 2H), 1.48 – 1.35 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 205.5, 170.1, 141.3, 136.3, 133.5, 132.6, 130.4, 129.0, 128.8, 127.1, 125.8, 118.4, 71.2, 53.8, 53.0, 40.2, 25.2, 22.9; IR (Neat Film, NaCl) 2949, 1738, 1716, 1594, 1571, 1432, 1228, 1195, 1123, 1094 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₈H₂₀O₃Cl [M+H]⁺: 319.1101, found 319.1112; SFC conditions: 7% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, t_R (min): minor = 4.14, major = 4.85.

The minor diastereomer was isolated as a colorless oil, 75% ee, $[\alpha]_D^{25}$ -56.2 (*c* 0.105, CHCl₃); $R_f = 0.4$ (17% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.24 – 7.15 (m, 3H), 7.15 – 7.08 (m, 1H), 6.15 (ddd, *J* = 17.0, 10.2, 8.6 Hz, 1H), 6.09 (ddd, *J* = 11.4, 7.2, 5.5 Hz, 1H), 5.99 (dd, *J* = 11.5, 2.1 Hz, 1H), 5.23 – 5.13 (m, 2H), 4.34 (d, *J* = 8.6 Hz, 1H), 3.55 (s, 3H), 2.80 (ddd, *J* = 12.6, 8.8, 7.2 Hz, 1H), 2.40 (ddd, *J* = 12.7, 6.5, 5.0 Hz, 1H), 3.55 (s, 3H), 2.80 (ddd, *J* = 12.6, 8.8, 7.2 Hz, 1H), 2.40 (ddd, *J* = 12.7, 6.5, 5.0 Hz, 1H), 3.55 (s, 3H), 2.80 (ddd, *J* = 12.6, 8.8, 7.2 Hz, 1H), 2.40 (ddd, *J* = 12.7, 6.5, 5.0 Hz, 1H), 3.55 (s, 3H), 2.80 (ddd, *J* = 12.6, 8.8, 7.2 Hz, 1H), 2.40 (ddd, *J* = 12.7, 6.5, 5.0 Hz, 1H), 3.55 (s, 3H), 3.55

1H), 2.17 – 2.08 (m, 1H), 2.08 – 1.97 (m, 1H), 1.97 – 1.86 (m, 1H), 1.86 – 1.73 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 205.3, 169.9, 141.7, 136.4, 133.9, 132.1, 129.7, 129.4, 127.7, 127.4, 125.8, 119.0, 70.4, 53.0, 52.8, 39.9, 25.2, 23.4; IR (Neat Film, NaCl) 2949, 1738, 1720, 1594, 1571, 1476, 1455, 1432, 1231, 1194, 1121, 1095 cm⁻¹; HRMS (FAB+) *m*/*z* calc'd for C₁₈H₂₀O₃Cl [M+H]⁺: 319.1101, found 319.1089; SFC conditions: 7% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): major = 4.67, minor = 5.28.

Products **7af** and **7af'** were isolated by silica gel chromatography (2% EtOAc in hexanes) as a mixture of diastereomers (2:1), where were separated by preparative HPLC (4% EtOAc in hexanes).

The major diastereomer was isolated as a colorless oil, 88% ee, $[\alpha]_D^{25}$ –20.4 (*c* 0.31, CHCl₃); $R_f = 0.3$ (9% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.14 (ddd, *J* = 16.8, 10.2, 9.2 Hz, 1H), 6.03 – 5.93 (m, 2H), 5.15 – 5.04 (m, 2H), 4.36 (d, *J* = 9.2 Hz, 1H), 3.68 (s, 3H), 2.73 (ddd, *J* = 12.5, 8.1, 7.4 Hz, 1H), 2.29 (dt, *J* = 12.5, 5.9 Hz, 1H), 1.98 – 1.86 (m, 1H), 1.76 – 1.63 (m, 2H), 1.47 – 1.33 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 205.7, 170.1, 138.3, 136.4, 132.5, 132.2, 130.9, 125.9, 121.0, 118.2, 71.3, 53.5, 53.0, 40.06, 25.2, 23.1; IR (Neat Film, NaCl) 2948, 1738, 1720, 1716, 1487, 1432, 1227, 1194, 1010 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₈H₂₀BrO₃ [M+H]⁺: 363.0596, found 363.0588; SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak AD-H column, $\lambda = 210$ nm, t_R (min): minor = 4.68, major = 5.17.

The minor diastereomer was isolated as a colorless oil, 79% ee, $[\alpha]_D^{25}$ –76.3 (*c* 0.16, CHCl₃); $R_f = 0.3$ (9% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 8.5 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 6.22 – 6.11 (m, 1H), 6.06 (ddd, *J* = 11.4, 7.2, 5.4 Hz, 1H), 5.97 (dd, *J* = 11.5, 2.1 Hz, 1H), 5.19 – 5.10 (m, 2H), 4.30 (d, *J* = 8.5 Hz, 1H), 3.54 (s, 3H), 2.80 (ddd, *J* = 12.7, 8.7, 7.1 Hz, 1H), 2.40 (ddd, *J* = 12.7, 6.4, 5.2 Hz, 1H), 2.17 – 2.07 (m, 1H), 2.04 – 1.94 (m, 1H), 1.94 – 1.85 (m, 1H), 1.84 – 1.73 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 205.5, 170.0, 138.6, 136.6, 132.1, 131.4, 131.3, 125.9, 121.2, 118.8, 70.4, 52.9, 52.8, 40.0, 25.3, 23.3; IR (Neat Film, NaCl) 2948, 1737, 1716, 1488, 1230, 1194, 1075, 1010 cm⁻¹; HRMS (FAB+) *m*/*z* calc'd for C₁₈H₂₀BrO₃ [M+H]⁺: 363.0596, found 363.0604; SFC conditions: 10% IPA, 2.5 mL/min, Chiralpak IC column, $\lambda = 210$ nm, t_R (min): minor = 4.43, major = 5.01.

Determination of the Absolute Configuration of 7ca.

The absolute configuration of 7ca was determined by comparing the optical rotation of its derivative with compound S2 obtained from the previously known compound S1.⁵

General procedure for the Pd/C-catalyzed hydrogenation (for eq 1): To a round bottom flask was added ethyl (*R*)-2-oxo-1-((*S*)-1-phenylallyl)cyclohexane-1-carboxylate **S1** (42.0 mg, >99% ee, 0.15 mmol), 10% Pd/C (2.9 mg, 2 mol%) and EtOH (4 mL). A hydrogen

balloon was then connected via a three-way stopcock. The flask was vacuumed/purged with H₂ quickly three times, then stirred for 2 h at room temperature. The mixture was filtered through a silica pad and the desired product **S2** (25.0 mg, 59% yield) was obtained as a colorless oil after purification by silica gel flash chromatography ($1\rightarrow$ 5% EtOAc in hexanes); [a]_D²⁵ +40.84 (*c* 0.67, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.23 (m, 2H), 7.23 – 7.18 (m, 1H), 7.18 – 7.12 (m, 2H), 4.21 (qd, *J* = 7.1, 2.2 Hz, 2H), 3.12 (dd, *J* = 12.1, 2.8 Hz, 1H), 2.54 – 2.39 (m, 2H), 1.95 (ddq, *J* = 19.7, 9.0, 3.1 Hz, 2H), 1.91 – 1.82 (m, 1H), 1.70 – 1.61 (m, 1H), 1.61 – 1.47 (m, 3H), 1.36 – 1.30 (m, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 0.69 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 207.9, 171.4, 139.9, 130.4, 127.9, 126.8, 64.6, 61.2, 51.3, 41.9, 36.9, 28.0, 24.7, 22.9, 14.2, 13.0. IR (Neat Film NaCl) 3026, 2961, 2935, 2870, 1712, 1495, 1451, 1368, 1308, 1269, 1233, 1194, 1138, 1090, 1025, 908, 865, 812, 759 cm⁻¹; HRMS (ESI) calc'd for C₁₈H₂₅O₃ [M+H]⁺: 289.1798, found 289.1798.

For eq 2: Followed the same procedure as eq 1. The reaction was conducted with **7ba** (76.4 mg, 0.27 mmol), 10% Pd/C (14.3 mg, 5 mol%) and EtOH (5 mL). The desired hydrogenation product was obtained in 31% yield (24.0 mg) with the same ¹H NMR spectrum and opposite optical rotation when compared to **S2**.

General Procedure for the Cope Rearrangment of β -Ketoesters 7.

A solution of compound 7 in toluene (0.1 M) was heated at 100 °C for five hours. After cooling to room temperature, the reaction mixture was concentrated *in vacuo*. The residue was purified by silica gel flash chromatography to afford the desired product 9.

Methyl (*R*)-3-cinnamyl-7-oxocyclohept-1-ene-1-carboxylate (9aa)

9aa was isolated by silica gel chromatography $(3\rightarrow 9\rightarrow 17\%$ EtOAc in hexanes, 72% yield) as a colorless oil. $[\alpha]_D^{25}$ –23.6 (*c* 0.49, CHCl₃); 95% ee; $R_f = 0.4$ (25% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.28 (m, 4H), 7.27 – 7.18 (m, 2H), 6.46 (d, *J* = 15.8 Hz, 1H), 6.15 (dt, *J* = 15.7, 7.2 Hz, 1H), 3.77 (s, 3H), 2.74 – 2.57 (m, 3H), 2.54 – 2.34 (m, 2H), 2.00 – 1.80 (m, 3H), 1.56 – 1.48 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 203.0, 165.5, 151.9, 137.2, 135.4, 133.1, 128.7, 127.6, 126.8, 126.3, 52.5, 43.3, 39.6, 39.1, 30.2, 21.5; IR (Neat Film, NaCl) 3024, 2929, 2858, 1722, 1716, 1495, 1435, 1377, 1256, 1202, 1027 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₈H₂₁O₃ [M+H]⁺: 285.1491, found 285.1491; SFC conditions: 10% IPA, 2.5 mL/min, Chiralcel OB-H column, $\lambda = 210$ nm, t_R (min): major = 13.72, minor = 15.18.

Synthesis of Endocyclic α , β -Unsaturated β -Ketoesters.

The α , β -unsaturated β -ketoesters **6a**⁶ and **6c**⁷ were prepared following literature procedures.

Methyl (*E*)-8-oxocyclooct-1-ene-1-carboxylate (6b)

Following a modified literature procedure,⁸ NaH (60% in mineral oil, 440 mg, 1.1 equiv) was added to a 250 mL round bottom flask and flushed with N₂. THF (27 mL) was then added, and the resulting suspension cooled to 0 °C. A solution of methyl 2-oxocyclooctane-1-carboxylate⁹ (1.84 g, 10 mmol) in THF (5 mL) was added slowly at 0 °C, and then the reaction mixture was warmed to room temperature. After stirring for 1 h, the enolate solution was cooled to -78 °C and a solution of PhSeCl (2.01 g, 1.05 equiv) in THF (8 mL) was added. After stirring for 1 h at -78 °C, the reaction mixture was warmed to room temperature was warmed to room temperature and stirred for an additional 1 h. Upon completion, the solution was diluted with Et₂O and washed twice with 1 M HCl, followed by brine. The organic layer was dried over Na₂SO₄ and concentrated. The crude product was dissolved in CH₂Cl₂ (100 mL), cooled to 0 °C, and treated with a solution of H₂O₂ (35% in water, 1.84 mL, 2.1 equiv) dropwise over 30 min. After stirring for an additional 1 h, water was added and the aqueous layer extracted with CH₂Cl₂. The combined organic layers were
washed with saturated NaHCO₃, water, brine and dried with Na₂SO₄. The crude product was purified by silica gel flash chromatography (5 \rightarrow 9% EtOAc in hexanes) to provide **6b** as a colorless oil (1.54 g, 85%). R_f = 0.3 (17% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.22 (t, *J* = 4.7 Hz, 1H), 3.73 (s, 3H), 2.60 – 2.53 (m, 2H), 2.43 – 2.36 (m, 2H), 1.94 – 1.85 (m, 2H), 1.73 – 1.61 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 209.2, 165.0, 147.3, 131.3, 52.4, 44.6, 30.4, 29.3, 22.2, 21.8; IR (Neat Film, NaCl) 2946, 1719, 1696, 1638, 1434, 1411, 1376, 1266, 1237, 1219, 1157, 1068 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₁₀H₁₄O₃ [M+H]⁺: 183.1021, found 183.1029.

Methyl 1-benzyl-2-oxo-2,5,6,7-tetrahydro-1*H*-azepine-3-carboxylate (6d)

To a solution of LDA [1.2 equiv, prepared fresh from diisopropylamine (513 μ L) and *n*-BuLi, (2.5 M in hexanes, 1.46 mL) in THF (10 mL) at 0 °C for 15 min] was added dropwise a solution of methyl 1-benzyl-2-oxoazepane-3-carboxylate (798 mg, 3.05 mmol) in THF (3 mL) at -78 °C and the resulting mixture was stirred for 1 h at -78 °C. A solution of PhSeCl (615 mg, 1.05 equiv) in THF (3 mL) was then added, and the mixture was slowly warmed to room temperature. The mixture was diluted with ethyl acetate, washed twice with 1 M HCl, followed by brine, and dried over Na₂SO₄. The crude mixture was purified by silica gel flash chromatography $(9 \rightarrow 17 \rightarrow 20\%)$ EtOAc in hexanes) to provide methyl 1-benzyl-2-oxo-3-(phenylselanyl)azepane-3-carboxylate as a yellow oil (343 mg, 27%). The isolated compound was carried forward without complete characterization by dissolving in CH_2Cl_2 (8 mL) and cooling to 0 °C. A solution of H_2O_2 (35% in water, 145 µL, 2.1 equiv) was added dropwise over 30 min. After stirring for an additional 1 h, water was added and the aqueous later extracted with CH₂Cl₂. The combined organic layers were washed with saturated NaHCO₃, water, brine and dried with Na₂SO₄. The crude product was purified by silica gel flash chromatography (25 \rightarrow 50% EtOAc in hexanes) to provide 9 as a pale yellow oil (170 mg, 79%). $R_f = 0.3$ (50% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₂) δ 7.40 – 7.27 (m, 6H), 4.72 (s, 2H), 3.83 (s, 3H), 3.30 (t, J = 6.3 Hz, 2H), 2.26 (q, J = 7.4 Hz, 2H), 1.74 – 1.64 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) & 166.5, 165.1, 143.8, 138.0, 132.4, 128.9, 128.5, 127.8, 52.5, 49.8, 45.4, 27.9, 23.7; IR (Neat Film, NaCl) 3493, 3029, 2952, 1721, 1650, 1621, 1471, 1435, 1359, 1274, 1251, 1193, 1159, 1103, 1067, 1053 cm⁻¹; HRMS (MM: ESI-APCI+) *m/z* calc'd for C₁₅H₁₈NO₃ [M+H]⁺: 260.1281, found 260.1285.

Table S2. Determination of Enantiomeric Excess

entry	compound	SFC analytic conditions	ee (%)
13	MeO ₂ C CO ₂ Me	Chiralpak IC, λ = 254 nm 10% IPA/CO ₂ , 2.5 mL/min t _R (min) major 6.64, minor 7.42	95
14	HO OH Ph S5aa	Chiralpak IC, λ = 254 nm 20% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 6.98, major 8.97	>99
15	2(Ph Ph 2(7aa	Chiralpak AD-H, λ = 210 nm 5% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 4.99, major 7.08	95
16	O Ph 2(CO ₂ Me 7aa'	Chiralpak AD-H, λ = 210 nm 5% IPA/CO ₂ , 2.5 mL/min t _R (min) major 5.62, minor 7.98	88
17	3(Tba	Chiralpak IA, λ = 210 nm 5% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 4.52, major 6.36	90
18	3(Tba'	Chiralpak IA, λ = 210 nm 5% IPA/CO ₂ , 2.5 mL/min t _R (min) major 5.79, minor 7.41	77
19	O Ph , CO ₂ Me 7ca	Chiralpak IA, λ = 210 nm 2% IPA/CO ₂ , 3.0 mL/min t _R (min) minor 6.82, major 13.26	98

entry	compound	SFC analytic conditions	ee (%)
20	O Ph CO ₂ Me 7ca'	Chiralpak IA, λ = 210 nm 2% IPA/CO ₂ , 3.0 mL/min t _R (min) major 6.95, minor 11.43	91
21	BnN 2(7da	Chiralcel OD-H, λ = 210 nm 10% MeCN/CO ₂ , 2.5 mL/min t _R (min) minor 13.74, major 16.85	79
22	BnN 2(7da'	Chiralcel OD-H, λ = 210 nm 10% MeCN/CO ₂ , 2.5 mL/min t _R (min) major 12.34, minor 15.02	62
23	Me 0 2 CO ₂ Me 7ab	Chiralpak AD-H, λ = 210 nm 8% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 4.13, major 4.50	95
24	Provide the second seco	Chiralpak AD-H, λ = 210 nm 10% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 3.43, major 4.49	91
25	O O O CO ₂ Me 7ad	Chiralpak AD-H, λ = 210 nm 8% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 4.28, major 4.75	91

26	OMe OCO2Me 7ad'	Chiralpak IC, λ = 210 nm 10% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 5.40, major 5.99	81
27	2{ CI CI CO ₂ Me 7ae	Chiralpak AD-H, λ = 210 nm 7% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 4.14, major 4.85	91
28	2(CO ₂ Me 7ae'	Chiralpak AD-H, λ = 210 nm 7% IPA/CO₂, 2.5 mL/min t _R (min) major 4.67, minor 5.28	75
29	Br 2(7af Br	Chiralpak AD-H, λ = 210 nm 10% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 4.68, major 5.17	88
30	Pr CO ₂ Me <i>7af</i> '	Chiralpak IC, λ = 210 nm 10% IPA/CO ₂ , 2.5 mL/min t _R (min) minor 4.43, major 5.01	79
31	CO ₂ Me	Chiralcel OB-H, λ = 210 nm 10% IPA/CO ₂ , 2.5 mL/min t _R (min) major 13.72, minor 15.18	95

9aa

Crystal Structure Analysis of Alkylation Product 3aa (smaple No.: p15559):

The α -alkylated Malonate 3aa (>99% ee) was recrystallized from Et₂O/hexanes (liquid/liquid diffusion) at 0 °C to provide suitable crystals for X-ray analysis, m.p. = 53 – 55 °C (hexanes/Et₂O).

Table 1. Crystal data and structure refinement for p15559.			
Identification code	p15559		
Empirical formula	C21 H26 O4		
Formula weight	342.42		
Temperature	100 K		
Wavelength	1.54178 ≈		
Crystal system	Orthorhombic		
Space group	$P2_{1}2_{1}2_{1}$		
Unit cell dimensions	$a = 7.7585(6) \approx$	$\alpha = 90\infty$	
	$b = 9.1039(7) \approx$	β=90∞	
	$c = 26.2256(17) \approx$	$\gamma=90\infty$	
Volume	1852.4(2) ≈ ³		
Ζ	4		
Density (calculated)	1.228 Mg/m ³		
Absorption coefficient	0.674 mm ⁻¹		

F(000)	736
Crystal size	0.21 x 0.19 x 0.17 mm ³
Theta range for data collection	3.370 to 78.511∞.
Index ranges	-9<=h<=9, -11<=k<=11, -32<=l<=33
Reflections collected	39232
Independent reflections	3967 [R(int) = 0.0517]
Completeness to theta = 67.000∞	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9612 and 0.9073
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3967 / 0 / 228
Goodness-of-fit on F ²	1.078
Final R indices [I>2sigma(I)]	R1 = 0.0402, $wR2 = 0.1023$
R indices (all data)	R1 = 0.0418, $wR2 = 0.1032$
Absolute structure parameter	0.12(7)
Extinction coefficient	n/a
Largest diff. peak and hole	0.476 and -0.182 e. \approx -3

Table 2. Atomic coordinates ($x \ 10^{5}$) and equivalent isotropic displacement parameters ($\approx^{2}x \ 10^{4}$) for p15559. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
O(1)	47530(20)	48207(19)	71564(6)	265(4)
O(2)	59320(20)	31380(18)	66418(6)	230(3)
O(3)	40030(20)	33780(20)	54882(7)	328(4)
O(4)	64670(20)	44547(18)	57227(6)	219(3)
C(1)	40600(30)	48920(30)	62552(8)	203(4)
C(2)	20770(30)	45310(30)	62993(9)	228(5)
C(3)	17000(30)	29830(30)	64929(10)	254(5)
C(4)	11800(30)	19040(30)	61504(11)	301(5)
C(5)	8120(30)	4840(30)	63209(13)	365(6)
C(6)	9650(40)	1220(30)	68287(12)	378(6)
C(7)	14440(40)	11840(30)	71745(12)	363(6)
C(8)	17930(30)	26150(30)	70102(10)	305(5)

C(9)	11240(30)	56730(30)	66066(10)	263(5)
C(10)	-2930(30)	63250(30)	64348(12)	344(6)
C(11)	43340(30)	65720(30)	61761(9)	216(4)
C(12)	35600(30)	71790(30)	56886(9)	270(5)
C(13)	48620(40)	78740(30)	53139(9)	297(5)
C(14)	55050(40)	93870(30)	54684(10)	308(5)
C(15)	65400(30)	94390(30)	59605(10)	292(5)
C(16)	55380(30)	90340(30)	64394(10)	289(5)
C(17)	52000(30)	74110(30)	65029(9)	237(5)
C(18)	49700(30)	43240(20)	67335(8)	184(4)
C(19)	68200(40)	25170(30)	70738(10)	337(6)
C(20)	48010(30)	41220(20)	57798(8)	191(4)
C(21)	73250(30)	37220(30)	53078(9)	288(5)

Table 3. Bond lengths [\approx] and angles [∞] for p15559.

O(1)-C(18)	1.210(3)
O(2)-C(18)	1.334(3)
O(2)-C(19)	1.441(3)
O(3)-C(20)	1.194(3)
O(4)-C(20)	1.336(3)
O(4)-C(21)	1.440(3)
C(1)-C(2)	1.577(3)
C(1)-C(11)	1.558(3)
C(1)-C(18)	1.530(3)
C(1)-C(20)	1.541(3)
C(2)-H(2)	1.0000
C(2)-C(3)	1.526(3)
C(2)-C(9)	1.509(3)
C(3)-C(4)	1.391(3)
C(3)-C(8)	1.400(4)
C(4)-H(4)	0.9500
C(4)-C(5)	1.397(4)
C(5)-H(5)	0.9500
C(5)-C(6)	1.377(5)

C(6)-H(6)	0.9500
C(6)-C(7)	1.377(4)
C(7)-H(7)	0.9500
C(7)-C(8)	1.398(4)
C(8)-H(8)	0.9500
C(9)-H(9)	0.9500
C(9)-C(10)	1.328(4)
C(10)-H(10A)	0.9500
C(10)-H(10B)	0.9500
C(11)-C(12)	1.517(3)
C(11)-C(17)	1.330(3)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(12)-C(13)	1.545(4)
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(13)-C(14)	1.520(4)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(14)-C(15)	1.521(4)
C(15)-H(15A)	0.9900
C(15)-H(15B)	0.9900
C(15)-C(16)	1.522(4)
C(16)-H(16A)	0.9900
C(16)-H(16B)	0.9900
C(16)-C(17)	1.510(3)
C(17)-H(17)	0.9500
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(18)-O(2)-C(19)	116.30(18)
C(20)-O(4)-C(21)	115.29(18)

C(11)-C(1)-C(2)	110.31(18)
C(18)-C(1)-C(2)	108.65(18)
C(18)-C(1)-C(11)	112.22(18)
C(18)-C(1)-C(20)	109.73(18)
C(20)-C(1)-C(2)	109.16(18)
C(20)-C(1)-C(11)	106.72(18)
C(1)-C(2)-H(2)	106.4
C(3)-C(2)-C(1)	113.83(19)
C(3)-C(2)-H(2)	106.4
C(9)-C(2)-C(1)	111.94(19)
C(9)-C(2)-H(2)	106.4
C(9)-C(2)-C(3)	111.37(19)
C(4)-C(3)-C(2)	119.5(2)
C(4)-C(3)-C(8)	118.1(2)
C(8)-C(3)-C(2)	122.3(2)
C(3)-C(4)-H(4)	119.8
C(3)-C(4)-C(5)	120.4(3)
C(5)-C(4)-H(4)	119.8
C(4)-C(5)-H(5)	119.6
C(6)-C(5)-C(4)	120.9(3)
C(6)-C(5)-H(5)	119.6
C(5)-C(6)-H(6)	120.3
C(7)-C(6)-C(5)	119.5(3)
C(7)-C(6)-H(6)	120.3
C(6)-C(7)-H(7)	119.9
C(6)-C(7)-C(8)	120.2(3)
C(8)-C(7)-H(7)	119.9
C(3)-C(8)-H(8)	119.6
C(7)-C(8)-C(3)	120.8(3)
C(7)-C(8)-H(8)	119.6
C(2)-C(9)-H(9)	118.9
C(10)-C(9)-C(2)	122.2(2)
C(10)-C(9)-H(9)	118.9
C(9)-C(10)-H(10A)	120.0
C(9)-C(10)-H(10B)	120.0
H(10A)-C(10)-H(10B)	120.0

C(12)-C(11)-C(1)	114.59(19)
C(17)-C(11)-C(1)	123.1(2)
C(17)-C(11)-C(12)	122.3(2)
С(11)-С(12)-Н(12А)	108.5
С(11)-С(12)-Н(12В)	108.5
C(11)-C(12)-C(13)	115.3(2)
H(12A)-C(12)-H(12B)	107.5
C(13)-C(12)-H(12A)	108.5
C(13)-C(12)-H(12B)	108.5
C(12)-C(13)-H(13A)	108.6
C(12)-C(13)-H(13B)	108.6
H(13A)-C(13)-H(13B)	107.6
C(14)-C(13)-C(12)	114.6(2)
C(14)-C(13)-H(13A)	108.6
C(14)-C(13)-H(13B)	108.6
C(13)-C(14)-H(14A)	108.4
C(13)-C(14)-H(14B)	108.4
C(13)-C(14)-C(15)	115.3(2)
H(14A)-C(14)-H(14B)	107.5
C(15)-C(14)-H(14A)	108.4
C(15)-C(14)-H(14B)	108.4
C(14)-C(15)-H(15A)	108.5
C(14)-C(15)-H(15B)	108.5
C(14)-C(15)-C(16)	115.0(2)
H(15A)-C(15)-H(15B)	107.5
C(16)-C(15)-H(15A)	108.5
C(16)-C(15)-H(15B)	108.5
C(15)-C(16)-H(16A)	108.6
C(15)-C(16)-H(16B)	108.6
H(16A)-C(16)-H(16B)	107.6
C(17)-C(16)-C(15)	114.6(2)
C(17)-C(16)-H(16A)	108.6
C(17)-C(16)-H(16B)	108.6
C(11)-C(17)-C(16)	125.4(2)
С(11)-С(17)-Н(17)	117.3
C(16)-C(17)-H(17)	117.3

O(1)-C(18)-O(2)	123.1(2)
O(1)-C(18)-C(1)	124.1(2)
O(2)-C(18)-C(1)	112.58(18)
O(2)-C(19)-H(19A)	109.5
O(2)-C(19)-H(19B)	109.5
O(2)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
O(3)-C(20)-O(4)	123.9(2)
O(3)-C(20)-C(1)	125.6(2)
O(4)-C(20)-C(1)	110.38(18)
O(4)-C(21)-H(21A)	109.5
O(4)-C(21)-H(21B)	109.5
O(4)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4.	Anisotropic displacement parameters ($\approx^2 x \ 10^4$) for p15559. The anisotropic
displacen	nent factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	333(9)	280(8)	183(7)	-48(7)	-16(7)	-5(7)
O(2)	272(8)	184(7)	234(8)	-17(6)	-28(7)	29(7)
O(3)	275(9)	437(10)	271(9)	-183(8)	0(7)	-67(8)
O(4)	200(8)	270(8)	189(7)	-67(6)	31(6)	6(7)
C(1)	184(10)	259(11)	166(9)	-48(8)	-11(8)	10(9)
C(2)	192(10)	258(11)	234(11)	-40(9)	-7(8)	-12(9)
C(3)	190(10)	242(11)	330(12)	-54(10)	10(9)	2(9)
C(4)	232(11)	291(12)	382(13)	-85(11)	19(10)	2(10)
C(5)	244(12)	264(12)	587(18)	-120(12)	35(12)	-9(10)
C(6)	279(13)	229(12)	625(18)	26(12)	73(12)	-13(11)

C(7)	288(13)	336(13)	466(16)	53(12)	30(12)	-15(11)
C(8)	250(12)	326(13)	339(13)	-26(11)	54(10)	-43(10)
C(9)	224(11)	237(11)	329(12)	-54(10)	16(10)	-12(9)
C(10)	238(12)	258(12)	536(16)	-36(12)	-13(12)	9(10)
C(11)	175(10)	247(11)	227(10)	-37(9)	15(9)	7(8)
C(12)	261(12)	250(12)	298(12)	3(10)	-70(10)	-14(10)
C(13)	365(13)	291(12)	237(11)	-11(10)	-38(10)	32(11)
C(14)	373(14)	258(11)	294(12)	53(10)	1(11)	2(10)
C(15)	274(12)	220(11)	383(14)	14(10)	-49(10)	-2(10)
C(16)	335(13)	211(11)	320(12)	-46(10)	-59(11)	-18(10)
C(17)	229(11)	236(11)	247(11)	-5(9)	-12(9)	-2(9)
C(18)	209(10)	154(9)	189(10)	-23(8)	-5(8)	-42(8)
C(19)	455(15)	255(12)	301(13)	35(11)	-67(12)	103(12)
C(20)	218(10)	189(10)	165(10)	-10(8)	-2(8)	-3(9)
C(21)	313(13)	338(13)	213(11)	-62(10)	103(10)	6(10)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($\approx^2 x \ 10^3$) for p15559.

	Х	у	Z	U(eq)
)	1(02	4592	5045	27
(2) (4)	1602	4583	5945	27
	1074	2134	5798	36
(5)	452	-242	6083	44
(6)	741	-853	6940	45
(7)	1538	944	7526	44
(8)	2097	3345	7253	37
(9)	1551	5935	6934	32
10A)	-738	6077	6108	41
(10B)	-862	7040	6638	41
(12A)	2691	7930	5780	32
(12B)	2950	6373	5511	32
(13A)	5865	7209	5281	36
(13B)	4312	7949	4974	36

H(14A)	4498	10046	5505	37
H(14B)	6230	9779	5189	37
H(15A)	7007	10443	6003	35
H(15B)	7532	8761	5928	35
H(16A)	6187	9387	6740	35
H(16B)	4419	9556	6434	35
H(17)	5641	6951	6801	28
H(19A)	7662	1791	6955	51
H(19B)	5985	2039	7300	51
H(19C)	7417	3299	7260	51
H(21A)	6846	4065	4983	43
H(21B)	7153	2659	5338	43
H(21C)	8561	3943	5320	43

Table 6.	Torsion	angles	$[\infty]$	for p15559.
----------	---------	--------	------------	-------------

C(1)-C(2)-C(3)-C(4)	-103.3(3)
C(1)-C(2)-C(3)-C(8)	79.2(3)
C(1)-C(2)-C(9)-C(10)	128.7(3)
C(1)-C(11)-C(12)-C(13)	-119.0(2)
C(1)-C(11)-C(17)-C(16)	178.5(2)
C(2)-C(1)-C(11)-C(12)	-62.6(2)
C(2)-C(1)-C(11)-C(17)	118.5(2)
C(2)-C(1)-C(18)-O(1)	-67.1(3)
C(2)-C(1)-C(18)-O(2)	107.8(2)
C(2)-C(1)-C(20)-O(3)	0.4(3)
C(2)-C(1)-C(20)-O(4)	177.69(18)
C(2)-C(3)-C(4)-C(5)	-179.4(2)
C(2)-C(3)-C(8)-C(7)	-179.8(2)
C(3)-C(2)-C(9)-C(10)	-102.6(3)
C(3)-C(4)-C(5)-C(6)	-0.3(4)
C(4)-C(3)-C(8)-C(7)	2.7(4)
C(4)-C(5)-C(6)-C(7)	1.6(4)
C(5)-C(6)-C(7)-C(8)	-0.8(4)
C(6)-C(7)-C(8)-C(3)	-1.4(4)
C(8)-C(3)-C(4)-C(5)	-1.8(4)

C(9)-C(2)-C(3)-C(4)	129.0(2)
C(9)-C(2)-C(3)-C(8)	-48.5(3)
C(11)-C(1)-C(2)-C(3)	-167.21(18)
C(11)-C(1)-C(2)-C(9)	-39.8(3)
C(11)-C(1)-C(18)-O(1)	55.1(3)
C(11)-C(1)-C(18)-O(2)	-129.96(19)
C(11)-C(1)-C(20)-O(3)	-118.8(3)
C(11)-C(1)-C(20)-O(4)	58.5(2)
C(11)-C(12)-C(13)-C(14)	-75.8(3)
C(12)-C(11)-C(17)-C(16)	-0.3(4)
C(12)-C(13)-C(14)-C(15)	64.0(3)
C(13)-C(14)-C(15)-C(16)	-64.8(3)
C(14)-C(15)-C(16)-C(17)	75.6(3)
C(15)-C(16)-C(17)-C(11)	-59.5(3)
C(17)-C(11)-C(12)-C(13)	59.9(3)
C(18)-C(1)-C(2)-C(3)	-43.8(2)
C(18)-C(1)-C(2)-C(9)	83.6(2)
C(18)-C(1)-C(11)-C(12)	176.12(19)
C(18)-C(1)-C(11)-C(17)	-2.8(3)
C(18)-C(1)-C(20)-O(3)	119.4(3)
C(18)-C(1)-C(20)-O(4)	-63.3(2)
C(19)-O(2)-C(18)-O(1)	-4.3(3)
C(19)-O(2)-C(18)-C(1)	-179.2(2)
C(20)-C(1)-C(2)-C(3)	75.8(2)
C(20)-C(1)-C(2)-C(9)	-156.8(2)
C(20)-C(1)-C(11)-C(12)	55.9(2)
C(20)-C(1)-C(11)-C(17)	-123.0(2)
C(20)-C(1)-C(18)-O(1)	173.6(2)
C(20)-C(1)-C(18)-O(2)	-11.5(3)
C(21)-O(4)-C(20)-O(3)	-6.4(3)
C(21)-O(4)-C(20)-C(1)	176.25(19)

Symmetry transformations used to generate equivalent atoms:

Crystal Structure Analysis of Diol S5aa (smaple No.: p15573):

The diol S5aa (>99% ee) was recrystallized from Et_2O /hexanes (liquid/liquid diffusion) at 0 °C to provide suitable crystals for X-ray analysis, m.p. = 91 – 92 °C (hexanes/Et₂O).

Table 1. Crystal data and structure refinement for p15573.				
p15573				
C19 H26 O2				
286.40				
100 K				
1.54178 ≈				
Orthorhombic				
$P2_12_12_1$				
$a = 6.1787(8) \approx$	$\alpha = 90\infty$			
$b = 9.0018(11) \approx$	$\beta = 90\infty$			
$c = 29.470(3) \approx$	$\gamma=90\infty$			
1639.1(3) ≈ ³				
4				
1.161 Mg/m ³				
0.569 mm ⁻¹				
624				
0.17 x 0.15 x 0.10 mm ³				
2.999 to 79.168∞ .				
-7<=h<=6, -11<=k<=11, -37<=l<=37				
	p15573 C19 H26 O2 286.40 100 K 1.54178 \approx Orthorhombic P2 ₁ 2 ₁ 2 ₁ a = 6.1787(8) \approx b = 9.0018(11) \approx c = 29.470(3) \approx 1639.1(3) \approx^{3} 4 1.161 Mg/m ³ 0.569 mm ⁻¹ 624 0.17 x 0.15 x 0.10 mm ³ 2.999 to 79.168 ∞ .			

Reflections collected	42476
Independent reflections	3528 [R(int) = 0.0365]
Completeness to theta = 67.000∞	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.9358
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3528 / 0 / 274
Goodness-of-fit on F ²	1.065
Final R indices [I>2sigma(I)]	R1 = 0.0269, wR2 = 0.0674
R indices (all data)	R1 = 0.0276, wR2 = 0.0680
Absolute structure parameter	0.06(3)
Extinction coefficient	n/a
Largest diff. peak and hole	0.151 and -0.151 e. \approx^{-3}

Table 2. Atomic coordinates ($x \ 10^5$) and equivalent isotropic displacement parameters ($\approx^2 x \ 10^4$) for p15573. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
O(1)	98299(14)	29698(10)	46715(3)	231(2)
D(2)	39847(15)	37085(11)	45850(3)	264(2)
2(1)	77350(20)	60425(14)	40871(4)	185(2)
2(2)	62050(20)	65375(14)	37135(4)	240(3)
(3)	58950(30)	82309(16)	36918(4)	332(4)
2(4)	55850(20)	89964(16)	41547(5)	297(3)
(5)	77130(20)	94951(15)	43706(4)	263(3)
(6)	91700(20)	82470(15)	45366(5)	257(3)
(7)	96570(20)	70494(14)	41772(5)	241(3)
(8)	73960(20)	47967(13)	43291(4)	179(2)
(9)	87550(20)	43732(14)	47335(4)	211(3)
(10)	56100(20)	36983(14)	42365(4)	218(3)
(11)	70390(70)	59480(50)	32407(13)	248(7)
(12)	54900(30)	62780(20)	28662(5)	255(5)
(13)	39140(40)	53410(20)	27498(8)	242(5)

C(14)	23070(60)	55120(40)	23888(11)	233(5)
C(15)	5980(50)	45320(40)	23756(10)	316(6)
C(16)	-10090(70)	46330(50)	20517(16)	387(9)
C(17)	-9830(90)	57330(60)	17220(20)	343(11)
C(18)	8040(100)	67220(60)	17270(13)	372(9)
C(19)	24250(60)	66010(40)	20567(14)	323(7)
C(11A)	64700(300)	57900(200)	32940(70)	420(50)
C(12A)	44830(140)	55960(90)	29580(30)	261(19)
C(13A)	43160(110)	60900(80)	25420(20)	240(20)
C(14A)	23680(160)	59780(130)	22540(40)	143(19)
C(15A)	5200(300)	51020(120)	23290(40)	340(30)
C(16A)	-12300(300)	52140(130)	20330(60)	290(30)
C(17A)	-9100(500)	61600(200)	16800(90)	470(60)
C(18A)	6600(400)	69300(200)	15880(50)	340(40)
C(19A)	23080(170)	68610(120)	18680(40)	210(20)

Table 3. Bond lengths [\approx] and angles [∞] for p15573.

O(1)-H(1)	0.8400	
O(1)-C(9)	1.4389(16)	
O(2)-H(2)	0.8400	
O(2)-C(10)	1.4365(16)	
C(1)-C(2)	1.5181(17)	
C(1)-C(7)	1.5171(18)	
C(1)-C(8)	1.3455(17)	
C(2)-H(2A)	1.0000	
C(2)-H(2B)	1.0000	
C(2)-C(3)	1.5376(19)	
C(2)-C(11)	1.577(4)	
C(2)-C(11A)	1.42(2)	
C(3)-H(3A)	0.9900	
C(3)-H(3B)	0.9900	
C(3)-C(4)	1.5403(18)	
C(4)-H(4A)	0.9900	
C(4)-H(4B)	0.9900	

C(4)-C(5)	1.528(2)
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(5)-C(6)	1.5205(19)
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(6)-C(7)	1.5410(19)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-C(9)	1.5067(16)
C(8)-C(10)	1.5066(17)
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(11)-C(12)	1.491(5)
C(12)-H(12)	0.9500
C(12)-C(13)	1.333(3)
C(13)-H(13)	0.9500
C(13)-C(14)	1.463(4)
C(14)-C(15)	1.376(5)
C(14)-C(19)	1.387(4)
C(15)-H(15)	0.9500
C(15)-C(16)	1.380(6)
C(16)-H(16)	0.9500
C(16)-C(17)	1.389(6)
C(17)-H(17)	0.9500
C(17)-C(18)	1.418(9)
C(18)-H(18)	0.9500
C(18)-C(19)	1.400(5)
C(19)-H(19)	0.9500
С(11А)-Н(11С)	0.9900
C(11A)-H(11D)	0.9900
C(11A)-C(12A)	1.59(2)

0.9500
1.307(12)
0.9500
1.477(12)
1.405(19)
1.387(13)
0.9500
1.39(2)
0.9500
1.36(3)
0.9500
1.22(4)
0.9500
1.31(2)
0.9500
109.5
109.5
116.03(11)
122.15(12)
121.82(11)
107.9
103.1
113.50(11)
109.8(2)
107.9
103.1
109.72(19)
107.9
114.9(8)
103.1
116.7(9)
108.5
108.5
114.97(11)
107.5

C(4)-C(3)-H(3A)	108.5
C(4)-C(3)-H(3B)	108.5
C(3)-C(4)-H(4A)	108.9
C(3)-C(4)-H(4B)	108.9
H(4A)-C(4)-H(4B)	107.8
C(5)-C(4)-C(3)	113.15(13)
C(5)-C(4)-H(4A)	108.9
C(5)-C(4)-H(4B)	108.9
C(4)-C(5)-H(5A)	108.5
C(4)-C(5)-H(5B)	108.5
H(5A)-C(5)-H(5B)	107.5
C(6)-C(5)-C(4)	115.23(11)
C(6)-C(5)-H(5A)	108.5
C(6)-C(5)-H(5B)	108.5
C(5)-C(6)-H(6A)	108.7
C(5)-C(6)-H(6B)	108.7
C(5)-C(6)-C(7)	114.29(11)
H(6A)-C(6)-H(6B)	107.6
C(7)-C(6)-H(6A)	108.7
C(7)-C(6)-H(6B)	108.7
C(1)-C(7)-C(6)	112.66(10)
C(1)-C(7)-H(7A)	109.1
C(1)-C(7)-H(7B)	109.1
C(6)-C(7)-H(7A)	109.1
C(6)-C(7)-H(7B)	109.1
H(7A)-C(7)-H(7B)	107.8
C(1)-C(8)-C(9)	122.91(11)
C(1)-C(8)-C(10)	124.41(11)
C(10)-C(8)-C(9)	112.66(10)
O(1)-C(9)-C(8)	112.27(10)
O(1)-C(9)-H(9A)	109.1
O(1)-C(9)-H(9B)	109.1
C(8)-C(9)-H(9A)	109.1
C(8)-C(9)-H(9B)	109.1
H(9A)-C(9)-H(9B)	107.9
O(2)-C(10)-C(8)	112.23(10)

O(2)-C(10)-H(10A)	109.2
O(2)-C(10)-H(10B)	109.2
C(8)-C(10)-H(10A)	109.2
C(8)-C(10)-H(10B)	109.2
H(10A)-C(10)-H(10B)	107.9
C(2)-C(11)-H(11A)	109.2
C(2)-C(11)-H(11B)	109.2
H(11A)-C(11)-H(11B)	107.9
C(12)-C(11)-C(2)	112.2(3)
C(12)-C(11)-H(11A)	109.2
C(12)-C(11)-H(11B)	109.2
C(11)-C(12)-H(12)	118.9
C(13)-C(12)-C(11)	122.2(2)
C(13)-C(12)-H(12)	118.9
C(12)-C(13)-H(13)	116.0
C(12)-C(13)-C(14)	128.0(2)
C(14)-C(13)-H(13)	116.0
C(15)-C(14)-C(13)	118.3(3)
C(15)-C(14)-C(19)	118.3(3)
C(19)-C(14)-C(13)	123.5(3)
C(14)-C(15)-H(15)	119.0
C(14)-C(15)-C(16)	121.9(3)
C(16)-C(15)-H(15)	119.0
C(15)-C(16)-H(16)	119.2
C(15)-C(16)-C(17)	121.5(4)
C(17)-C(16)-H(16)	119.2
С(16)-С(17)-Н(17)	121.6
C(16)-C(17)-C(18)	116.7(4)
C(18)-C(17)-H(17)	121.6
C(17)-C(18)-H(18)	119.5
C(19)-C(18)-C(17)	121.0(4)
C(19)-C(18)-H(18)	119.5
C(14)-C(19)-C(18)	120.5(3)
C(14)-C(19)-H(19)	119.8
C(18)-C(19)-H(19)	119.8
С(2)-С(11А)-Н(11С)	107.2

C(2)-C(11A)-H(11D) 107.2 C(2)-C(11A)-C(12A)120.5(11)H(11C)-C(11A)-H(11D) 106.8 C(12A)-C(11A)-H(11C) 107.2 C(12A)-C(11A)-H(11D) 107.2 C(11A)-C(12A)-H(12A) 116.2 C(13A)-C(12A)-C(11A) 127.6(9) C(13A)-C(12A)-H(12A) 116.2 C(12A)-C(13A)-H(13A) 117.3 C(12A)-C(13A)-C(14A) 125.5(9) C(14A)-C(13A)-H(13A) 117.3 C(15A)-C(14A)-C(13A) 127.6(11) C(19A)-C(14A)-C(13A) 117.0(9) C(19A)-C(14A)-C(15A) 115.4(9) C(14A)-C(15A)-H(15A) 120.3 C(16A)-C(15A)-C(14A) 119.4(10) C(16A)-C(15A)-H(15A) 120.3 C(15A)-C(16A)-H(16A) 122.8 C(17A)-C(16A)-C(15A) 114.4(18) C(17A)-C(16A)-H(16A) 122.8 C(16A)-C(17A)-H(17A) 115.1 C(18A)-C(17A)-C(16A) 130(3) C(18A)-C(17A)-H(17A) 115.1 C(17A)-C(18A)-H(18A) 121.7 C(17A)-C(18A)-C(19A) 116.5(17) C(19A)-C(18A)-H(18A) 121.7 C(14A)-C(19A)-H(19A) 117.8 C(18A)-C(19A)-C(14A) 124.4(11) C(18A)-C(19A)-H(19A) 117.8

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($\approx^2 x \ 10^4$) for p15573. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

\mathbf{U}	U^{11}	U^{22}	U ³³	U ²³	U13	U^{12}
--------------	----------	----------	-----------------	-----------------	-----	----------

O(1)	172(4)	230(4)	292(4)	75(4)	-21(4)	6(3)	
O(2)	173(4)	331(5)	289(5)	115(4)	15(4)	-10(4)	
C(1)	175(5)	219(6)	162(5)	19(4)	8(4)	23(5)	
C(2)	308(7)	249(6)	164(5)	9(5)	-43(5)	76(5)	
C(3)	542(10)	269(7)	186(6)	19(5)	-72(6)	135(7)	
C(4)	369(8)	290(7)	232(6)	-21(5)	-40(6)	122(6)	
C(5)	343(7)	220(6)	227(6)	15(5)	68(6)	-12(6)	
C(6)	238(6)	254(6)	279(6)	15(5)	-9(5)	-67(5)	
C(7)	189(6)	230(6)	305(6)	53(5)	47(5)	-20(5)	
C(8)	166(6)	211(6)	161(5)	10(4)	-4(5)	3(5)	
C(9)	220(6)	216(6)	198(6)	37(4)	-40(5)	-3(5)	
C(10)	190(6)	225(6)	238(6)	3(5)	-7(5)	-27(5)	
C(11)	340(20)	275(11)	130(13)	-19(10)	32(13)	83(12)	
C(12)	381(11)	220(9)	163(8)	-7(6)	-23(7)	-7(9)	
C(13)	335(11)	196(10)	196(10)	-24(8)	23(9)	16(8)	
C(14)	301(12)	217(14)	179(13)	-48(10)	27(11)	12(12)	
C(15)	287(11)	446(19)	215(11)	25(13)	44(8)	-46(15)	
C(16)	284(14)	590(20)	284(12)	10(20)	20(10)	-146(19)	
C(17)	314(15)	490(30)	228(16)	-88(19)	-10(10)	-106(17)	
C(18)	550(20)	312(17)	250(20)	-34(15)	-60(20)	-42(15)	
C(19)	457(14)	261(16)	252(18)	-39(14)	-111(17)	-76(13)	
C(11A) 310(80)	680(90)	270(50)	240(50)	220(50)	280(60)	
C(12A) 310(40)	210(40)	260(40)	-60(30)	60(30)	-70(30)	
C(13A) 220(30)	260(40)	230(40)	-60(30)	20(30)	-20(30)	
C(14A) 230(30)	110(50)	100(50)	20(30)	-30(40)	-50(40)	
C(15A) 670(80)	170(50)	170(40)	70(40)	100(40)	80(50)	
C(16A) 260(50)	320(60)	300(60)	-130(60)	80(40)	-110(50)	
C(17A)770(110)	430(110)	220(70)	-200(80)	120(60)	-150(80)	
C(18A) 560(90)	260(60)	190(60)	-60(50)	220(70)	-10(50)	
C(19A) 230(50)	160(40)	250(50)	-110(40)	30(50)	-70(30)	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($\approx^2 x \ 10^3$) for p15573.

	Х	у	Z	U(eq)	
H(1)	11102	3117	4581	35	
H(2)	4453	3262	4815	40	
H(2A)	4760	6077	3773	29	
H(2B)	4766	6175	3822	29	
H(3A)	4617	8447	3500	40	
H(3B)	7174	8673	3541	40	
H(4A)	4637	9873	4115	36	
H(4B)	4844	8300	4363	36	
H(5A)	8525	10093	4146	32	
H(5B)	7375	10152	4631	32	
H(6A)	8476	7766	4801	31	
H(6B)	10556	8681	4641	31	
H(7A)	10085	7541	3890	29	
H(7B)	10894	6439	4281	29	
H(9A)	9852	5155	4787	25	
H(9B)	7819	4318	5006	25	
H(10A)	4927	3938	3942	26	
H(10B)	6237	2689	4214	26	
H(11A)	8452	6413	3171	30	
H(11B)	7262	4860	3260	30	
H(12)	5630	7187	2705	31	
H(13)	3823	4452	2923	29	
H(15)	522	3763	2596	38	
H(16)	-2160	3933	2055	46	
H(17)	-2106	5820	1503	41	
H(18)	901	7479	1503	45	
H(19)	3615	7269	2053	39	
H(11C)	7024	4783	3363	50	
H(11D)	7625	6313	3125	50	
H(12A)	3276	5059	3071	31	
H(13A)	5551	6561	2415	29	
H(15A)	465	4438	2579	41	
H(16A)	-2533	4673	2075	35	

H(17A)	-2083	6235	1473	56
H(18A)	686	7555	1327	41
H(19A)	3543	7451	1802	26

Table 6. Torsion angles $[\infty]$ for p15573.

C(1)-C(2)-C(3)-C(4)	-43.6(2)
C(1)-C(2)-C(11)-C(12)	174.6(2)
C(1)-C(2)-C(11A)-C(12A)	151.8(11)
C(1)-C(8)-C(9)-O(1)	-119.85(13)
C(1)-C(8)-C(10)-O(2)	-110.60(13)
C(2)-C(1)-C(7)-C(6)	90.17(13)
C(2)-C(1)-C(8)-C(9)	-173.18(11)
C(2)-C(1)-C(8)-C(10)	5.28(19)
C(2)-C(3)-C(4)-C(5)	90.06(17)
C(2)-C(11)-C(12)-C(13)	-90.1(3)
C(2)-C(11A)-C(12A)-C(13A)	119.6(12)
C(3)-C(2)-C(11)-C(12)	-60.0(3)
C(3)-C(2)-C(11A)-C(12A)	-71.7(15)
C(3)-C(4)-C(5)-C(6)	-69.81(15)
C(4)-C(5)-C(6)-C(7)	52.74(15)
C(5)-C(6)-C(7)-C(1)	-73.65(14)
C(7)-C(1)-C(2)-C(3)	-36.48(17)
C(7)-C(1)-C(2)-C(11)	86.7(2)
C(7)-C(1)-C(2)-C(11A)	101.4(8)
C(7)-C(1)-C(8)-C(9)	5.86(18)
C(7)-C(1)-C(8)-C(10)	-175.69(11)
C(8)-C(1)-C(2)-C(3)	142.60(14)
C(8)-C(1)-C(2)-C(11)	-94.2(2)
C(8)-C(1)-C(2)-C(11A)	-79.5(8)
C(8)-C(1)-C(7)-C(6)	-88.92(15)
C(9)-C(8)-C(10)-O(2)	67.99(13)
C(10)-C(8)-C(9)-O(1)	61.53(13)
C(11)-C(2)-C(3)-C(4)	-166.9(2)
C(11)-C(12)-C(13)-C(14)	-179.2(2)

C(12)-C(13)-C(14)-C(15)	-169.1(2)
C(12)-C(13)-C(14)-C(19)	11.5(4)
C(13)-C(14)-C(15)-C(16)	178.8(3)
C(13)-C(14)-C(19)-C(18)	-178.5(3)
C(14)-C(15)-C(16)-C(17)	0.0(6)
C(15)-C(14)-C(19)-C(18)	2.1(5)
C(15)-C(16)-C(17)-C(18)	1.6(7)
C(16)-C(17)-C(18)-C(19)	-1.3(8)
C(17)-C(18)-C(19)-C(14)	-0.5(7)
C(19)-C(14)-C(15)-C(16)	-1.8(5)
C(11A)-C(2)-C(3)-C(4)	179.2(8)
C(11A)-C(12A)-C(13A)-C(14A)	-175.2(11)
C(12A)-C(13A)-C(14A)-C(15A)	-13.2(14)
C(12A)-C(13A)-C(14A)-C(19A)	165.1(8)
C(13A)-C(14A)-C(15A)-C(16A)	175.8(10)
C(13A)-C(14A)-C(19A)-C(18A)	-177.1(11)
C(14A)-C(15A)-C(16A)-C(17A)	2.3(19)
C(15A)-C(14A)-C(19A)-C(18A)	1.4(15)
C(15A)-C(16A)-C(17A)-C(18A)	-1(3)
C(16A)-C(17A)-C(18A)-C(19A)	0(3)
C(17A)-C(18A)-C(19A)-C(14A)	0(2)
C(19A)-C(14A)-C(15A)-C(16A)	-2.5(15)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(1)-H(1)O(2)#1	0.84	1.86	2.6640(13)	160.0	
O(2)-H(2)O(1)#2	0.84	1.89	2.7121(13)	165.9	

Table 7. Hydrogen bonds for p15573 [\approx and ∞].

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 x-1/2,-y+1/2,-z+1 ¹H NMR and ¹³C NMR Spectra

References

- (1) A. M. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, **1996**, *15*, 1518.
- (2) (a) Liu, W.-B.; He, H.; Dai, L.-X.; You, S.-L. *Synthesis*, **2009**, 2076. (b) Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. *J. Am. Chem. Soc.* **2012**, *134*, 4812.
- (3) (a) Wuts, P. G. M.; Ashford, S. W.; Anderson, A. M.; Atkins, J. R. Org. Lett. 2003, 5,
- 1483. (b) Malkov, A. V.; Gouriou, L.; Lloyd-Jones, G. C.; Starý, I.; Langer, V.; Spoor,
- P.; Vinader, V.; Kočovský, P. Chem. Eur. J. 2006, 12, 6910.
- (4) Itoh, T.; Nomura, S.; Ohtake, M.; Yoshida, T.; Uno, T.; Kubo, M.; Kajiwara, A.;
- Sada, K.; Miyata, M. Macromolecules, 2004, 37, 8230-8238.
- (5) Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. *J. Am. Chem. Soc.* **2013**, *135*, 10626.
- (6) Ikeda, S.; Shibuya, M.; Kanoh, N.; Iwabuchi, Y. Org. Lett. 2009, 11, 1833.
- (7) Amat, M.; Arioli, F.; Pérez, M. Molins, E.; Bosch, J. Org. Lett. 2013, 15, 2470.
- (8) Darses, B.; Michaelides, I. N.; Sladojevich, F.; Ward, J. W.; Rzepa, P. R.; Dixon, D.
 J. Org. Lett. 2012, 14, 1684.
- (9) Driver, T. G.I Kong, C. Org. Lett. 2015, 17, 802.