

Supporting Information

An Efficient Protocol for the Palladium-catalyzed Asymmetric Decarboxylative Allylic Alkylation Using Low Palladium Concentrations and a Palladium(II) Precatalyst

Alexander N. Marziale, Douglas C. Duquette, Robert A. Craig, II, Kelly E. Kim, Marc Liniger, Yoshitaka Numajiri and Brian M. Stoltz*

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (USA)

Table of Contents:

Materials and Methods	SI-2	
Low Pd-Loading Allylic Alkylation Reactions: General Method	SI-3	
Low Pd-Loading Allylic Alkylation Reactions: Scale Up Procedures	SI-9	
Method for the Determination of Enantiomeric Excess	SI-11	
¹ H NMR, ¹³ C NMR and IR Spectra	SI-31	

Materials and Methods. Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon unless otherwise noted. Sure/SealTM bottles of *t*-AmylOH, EtOH and acetone were purchased from Aldrich and stored in a glove box. EtOAc was distilled over K₂CO₃ under an atmosphere of nitrogen, sparged with nitrogen for 30 min and stored in a Pd(OAc)₂ was purchased from Aldrich and stored in a glove box. glove box. Tris(dibenzylideneacetone)dipalladium(0) (Pd₂(dba)₂) was purchased from Strem and stored in a glove box. Tetrabutylammonium difluorotriphenylsilicate (TBAT) was purchased from Sigma-Aldrich, triturated twice with EtOAc under a cone of argon, dried for 24 h in vacuo (0.30 torr) and stored in a glove box. (S)-t-BuPHOX¹ and (S)-(CF₃)₃-t-BuPHOX² were prepared by known methods and stored in a glove box. Reaction temperatures were controlled by an IKAmag temperature modulator. Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV fluorescence quenching, anisaldehyde, KMnO₄, or CAM staining. SiliaFlash P60 Academic Silica gel (particle size 0.040-0.063 mm) was used for flash chromatography. Analytical chiral HPLC was performed with an Agilent 1100 Series HPLC utilizing a Chiralcel OJ-H column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. with visualization at 220 or Analytical SFC was performed with a Mettler SFC supercritical CO₂ analytical 254 nm. chromatography system utilizing Chiralcel (OD-H or OJ-H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. with visualization at 210 or 254 nm. Analytical achiral GC was performed with an Agilent 6890 Series GC utilizing an HP-5 column (30 m x 0.25 mm). GC yields are reported relative to an internal standard of tridecane and fitted to a calibration curve. Analytical chiral GC performed with an Agilent 6850 Series GC utilizing a G-TA column (22 m x 0.25 mm). Optical rotations were measured with a Jasco P-2000 polarimeter at 589 nm. ¹H and ¹³C NMR spectra were recorded on a Varian MR 400 (at 400 MHz and 101 MHz, respectively), and are reported relative to residual protio solvent (CDCl₃ = 7.26 and 77.0 ppm, respectively). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). IR

¹ M. R. Krout, J. T. Mohr, B. M. Stoltz, Org. Synth., 2009, 86, 181–193.

² N. T. McDougal, J. Streuff, H. Mukherjee, S. C. Virgil, B. M. Stoltz, *Tetrahedron Lett.*, **2010**, *51*, 5550–5554.

spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption (cm⁻¹). High resolution mass spectra were obtained from the Caltech Mass Spectral Facility using a JEOL JMS-600H High Resolution Mass Spectrometer in electron ionization (EI+) mode.

Low Pd-Loading Allylic Alkylation Reactions

General Method

In a nitrogen-filled glove box, Pd(OAc)₂ (1.1 mg, 4.9 µmol) was weighed into a 20 mL scintillation vial and dissolved in TBME (20 mL). In a separate 1-dram vial, (*S*)-*t*-BuPHOX (1.9 mg, 4.9 µmol) was dissolved in TBME (1 mL). To a 2-dram vial equipped with a magnetic stirbar, 1.02 mL of the Pd(OAc)₂ solution was added (56 µg, 0.25 µmol, 0.125 mol %) followed by 0.51 mL of the (*S*)-*t*-BuPHOX solution (0.97 mg, 2.5 µmol, 1.25 mol %). This mixture was stirred at ambient temperature (28 °C) in the glove box for 30–40 min. Substrate (0.20 mmol, 1.0 equiv) was taken up in TBME (0.5 mL) and added to the stirring catalyst solution. For reactions analyzed by GC, tridecane (24 µL, 0.1 mmol, 0.5 equiv) was added. The reaction was sealed with a Teflon-lined cap, removed from the glove box and stirred at the indicated temperature for the indicated period of time. At this point, the reaction was analyzed by GC, or passed through a silica plug, concentrated in vacuo, and purified by column chromatography.

(*S*)-2-allyl-2-methylcyclohexan-1-one (2a). \mathbf{RF} = Synthesized according to the general method from cyclohexanone 1a.³ The reaction was passed through a plug of SiO₂ and analyzed by GC (99% yield). The product could be isolated by column chromatography (SiO₂, 5% Et₂O in pentane) as a colorless oil and matched previously reported characterization data:³ ¹H NMR (300 MHz, CDCl₃) δ 5.75-5.61 (m, 1H), 5.05 (s, 1H), 5.01 (m, 1H), 2.40-2.31 (m, 3H), 2.21 (dd, *J* = 13.8, 7.5 Hz, 1H), 1.78 (m, 5H), 1.56 (m, 1H), 1.06 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 215.4, 133.7, 117.9, 48.4, 41.9, 38.8, 38.5, 27.4,

³ D. C. Behenna, B. M. Stoltz, J. Am. Chem. Soc., 2004, 126, 15044–15045.

22.6, 21.0; IR (Neat Film NaCl) 2934, 2865, 1707, 1451, 912 cm⁻¹; HRMS *m/z* calc'd for C₁₀H₁₆O [M]⁺: 152.1201, found 152.1204; $[\alpha]_D^{28}$ –22.90° (*c* 2.09, hexane, 89 % ee).

(*S*)-2-allyl-2-methyl-3,4-dihydronaphthalen-1(2*H*)-one (2b). Synthesized according to the general method from tetralone 1b.³ Product was isolated by column chromatography (SiO₂, 5–10% Et₂O in hexanes) as a pale yellow oil (85% yield) and matched previously reported characterization data:³ ¹H NMR (300 MHz, CDCl₃) δ 8.04 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.45 (dt, *J* = 7.7, 1.5 Hz, 1H), 7.29 (app. t, *J* = 7.2 Hz, 1H), 7.21 (app. d, *J* = 7.5 Hz, 1H), 5.85-5.71 (m, 1H), 5.10 (s, 1H), 5.05 (s, 1H), 2.97 (t, *J* = 6.3 Hz, 2H), 2.46 (dd, *J* = 13.8, 7.5 Hz, 1H), 2.27 (ddt, *J* = 14.0, 7.5, 1.2 Hz, 1H), 2.07 (ddd, *J* = 13.4, 7.2, 6.0 Hz 1H), 1.89 (ddd, *J* = 14.0, 6.9, 5.7 1H), 1.18 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 202.0, 143.2, 133.9, 133.0, 131.5, 128.6, 127.9, 126.5, 118.1, 44.5, 41.0, 33.2, 25.3, 21.8; IR (Neat Film NaCl) 3073, 2930, 1682, 1455, 1220, 916, 742 cm⁻¹; HRMS *m/z* calc'd for C₁₄H₁₆O [M]⁺: 200.1201, found 200.1194; [α]_D²⁷ –18.59° (*c* 2.08, hexane, 88 % ee).

(*S*)-2-allyl-2-methylcycloheptan-1-one (2c). Synthesized according to the general method from cycloheptanone 1c³ using 1.0 mol % (*S*)-*t*-BuPHOX and 0.10 mol % Pd(OAc)₂ in toluene at 60 °C for 10 h. Product was isolated by column chromatography (SiO₂, 3% Et₂O in pentane) as a colorless oil (97% yield) and matched previously reported characterization data:³ ¹H NMR (300 MHz, CDCl₃) δ 5.70 (ddt, *J* = 16.8, 10.2, 7.5, 1H), 5.02 (m, 2H), 2.59 (app. td, *J* = 11.1, 2.7 Hz, 1H), 2.42 (app. t, *J* = 9.0 Hz, 1H), 2.24 (dd, *J* = 13.8, 7.5 Hz, 1H), 2.16 (dd, *J* = 13.8, 7.8 Hz, 1H), 1.78-1.30 (m, 8H), 1.03 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 217.4, 133.8, 117.9, 50.8, 43.6, 40.6, 36.6, 30.6, 26.4, 24.4,

22.3; IR (Neat Film NaCl) 2930, 1702, 1458 cm⁻¹; HRMS *m/z* calc'd for C₁₁H₁₈O [M]⁺: 166.1358, found 166.1360; $[\alpha]_D^{28}$ –34.70° (*c* 1.52, hexane, 87 % ee).

(S)-2-allyl-2-methyl-1,5-dioxaspiro[5.5]undecan-3-one (2d). A 20 mL vial was soaked in a 20:1 isopropanol:toluene bath saturated with potassium hydroxide for 12 h, rinsed with deionized water, acetone, and dried in a 120 °C oven overnight. The hot vial was the cycled into a nitrogen-filled glovebox and allowed to cool to ambient temperature. The vial was then charged Bu₄NPh₃SiF₂ (TBAT, 184 mg, 0.34 mmol, 1.00 equiv) and toluene (12.0 mL, 0.033 M) with stirring, followed by Pd(OAc)₂ (0.10 mg, 0.0004 mmol, 1.0 mg/mL in toluene, 0.00125 equiv) and (S)-(CF₃)₃-t-BuPHOX (2.37 mg, 0.004 mmol, 10 mg/mL in toluene, 0.0125 equiv). The reaction vessel was immediately introduced to a heat block at 32 °C and allowed to stir for 20 minutes. To the resulting tan solution was added allylmesylate⁴ (57 mg, 0.42 mmol, 1.20 equiv) quickly dropwise. After 3 minutes, silvl enol ether $1d^5$ (100 mg, 0.34 mmol, 1.00 equiv) was added quickly dropwise. Upon complete consumption of the enol ether (as determined by TLC analysis, 24 h), the resultant tan solution was removed from the heat block, allowed to cool to ambient temperature, and removed from the glove box. The reaction mixture was filtered through a pad of SiO₂ using hexanes eluent to remove toluene, followed by Et₂O eluent to isolate the volatile reaction products. The filtrate was concentrated in vacuo to a brown oil which was subsequently purified by flash chromatography (SiO₂, 4% Et₂O in hexanes) to afford volatile allyl ketal **2d** (60 mg, 79% yield) as a clear, colorless oil: $R_f = 0.35$ (19:1 hexanes:Et₂O); ¹H NMR (400 MHz. $CDCl_3$), 5.85 (ddt, J = 17.4, 10.3, 7.2 Hz, 1H), 5.14–5.03 (m, 2H), 4.20 (d, J = 1.0 Hz, 2H), 2.51 (ddt, J= 14.0, 7.2, 1.2 Hz, 1H), 2.41 (ddt, J = 14.0, 7.2, 1.2 Hz, 1H), 1.87–1.42 (m, 10H), 1.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃), 211.4, 132.7, 118.8, 100.0, 82.0, 66.6, 44.0, 35.8, 35.5, 25.4, 24.7, 23.1,

⁴ a) I. N. Mykola, H. Wolfgang, S. Martin, B. Andreas, S. Jens, K. Karsten, M. Thorsten, B. Peter, F. Walter, Production of Compounds Comprising CF30 groups. U.S. Patent # 2011082312 A1, April 7, 2011; b) S. Dykstra, H. S. Mosher, *J. Am. Chem. Soc.* **1957**, *79*, 3474–3475.

⁵ R. A. Craig, II, J. L. Roizen, R. C. Smith, A. C. Jones, B. M. Stoltz, Org. Lett., 2012, 14, 5716–5719.

23.1; IR (Neat Film, NaCl) 2938, 2860, 1742, 1446, 1365, 1259, 1159, 1112, 1056, 1000, 943, 916, 826 cm⁻¹; HRMS (EI+) m/z calc'd for $C_{13}H_{20}O_3$ [M•]⁺: 224.1412, found 224.1409; $[\alpha]_D^{25.0}$ -45.9° (*c* 1.10, CHCl₃, 90% ee).

(2*R*,5*R*)-2,5-diallyl-2,5-dimethylcyclohexane-1,4-dione (2e). Synthesized according to the general method from diketone 1e⁶ using 2.5 mol % (*S*)-(CF₃)₃-*t*-BuPHOX and 0.25 mol % Pd(OAc)₂ in toluene at 25 °C for 19 h. Product was isolated by column chromatography (SiO₂, 3% EtOAc in hexanes) as a colorless oil (97% yield) and matched previously reported characterization data:^{6 1}H NMR (300 MHz, CDCl₃) δ 5.68 (dddd, *J* = 18.3, 10.2, 6.9, 6.9 Hz, 2H), 5.17–5.09 (comp. m, 3H), 5.07–5.04 (m, 1H), 2.82 (d, *J* = 14.7 Hz, 2H), 2.38 (d, *J* = 15 Hz, 2H), 2.34 (app ddt, *J* = 13.2, 6.9, 1.0 Hz, 2H), 2.09 (app ddt, *J* = 13.5, 7.8, 0.9 Hz, 2H), 1.10 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 212.8, 132.4, 120.0, 49.4, 48.4, 43.8, 24.3; IR (Neat film, NaCl) 3078, 2978, 1712, 1640, 1458, 1378, 1252, 1129, 1101, 998, 921 cm⁻¹; HRMS (EI) *m*/*z* calc'd for C₁₄H₂₀O₂ [M]⁺: 220.1463, found 220.1466; [α]²⁵_D –163.1 (*c* 0.52, CH₂Cl₂). Chiral GC assay (GTA column): 100 °C isothermal method over 90 min. Retention times: 67.7 min (Major enantiomer, *C*₂ diastereomer, 81.7%), 74.1 min (Minor enantiomer, *C*₂ diastereomer, 0.6%), 77.4 min (*meso* diastereomer, 17.6%). Achiral GC assay (DB-Wax column): 100 °C isotherm for 10.0 min. Retention times: 18.5 min (*C*₂ diastereomer, 81.0%), 18.7 min (*meso* diastereomer, 19.0%).

⁶ J. A. Enquist, B. M. Stoltz, *Nature*, **2008**, 453, 1228–1231.

(*S*)-3-allyl-1-benzoyl-3-ethylpiperidin-2-one (6a). Synthesized according to the general method from lactam 5a⁷ using 3.0 mol % (*S*)-(CF₃)₃-*t*-BuPHOX and 0.30 mol % Pd(OAc)₂. Product was isolated by column chromatography (SiO₂, 15–20% Et₂O in hexanes) as a colorless oil (85% yield) and matched previously reported characterization data:⁷ $R_f = 0.39$ (20% Et₂O in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.53–7.49 (m, 2H), 7.48–7.43 (m, 1H), 7.41–7.34 (m, 2H), 5.74 (dddd, J = 16.7, 10.4, 7.6, 7.0 Hz, 1H), 5.19–5.02 (m, 2H), 3.84–3.70 (m, 2H), 2.51 (ddt, J = 13.8, 7.0, 1.3 Hz, 1H), 2.28 (ddt, J = 13.8, 7.6, 1.2 Hz, 1H), 2.06–1.91 (m, 2H), 1.91–1.74 (m, 3H), 1.74–1.63 (m, 1H), 0.91 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 178.0, 175.6, 136.7, 133.6, 131.2, 128.1, 127.4, 118.6, 47.4, 46.9, 41.3, 30.3 (2C), 19.6, 8.3; IR (Neat Film NaCl) 3072, 2970, 2941, 2880, 1678, 1448, 1384, 1283, 1147, 916, 725, 694 cm⁻¹; HRMS (MM: ESI-APCI) *m/z* calc'd for C₁₇H₂₂NO₂ [M+H]⁺: 272.1645, found 272.1649; [α]_D²⁵–28.6° (c 1.15, CHCl₃, 99% ee).

(*S*)-3-allyl-1-benzoyl-3-methylpiperidin-2-one (6b). Synthesized according to the general method from lactam **5b**⁷ using 5.0 mol % (*S*)-(CF₃)₃-*t*-BuPHOX and 0.50 mol % Pd(OAc)₂. Product was isolated by column chromatography (SiO₂, 5–10% Et₂O in hexanes) as a colorless oil (81% yield) and matched previously reported characterization data:⁷ R_f = 0.55 (25% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.54–7.50 (m, 2H), 7.49–7.43 (m, 1H), 7.40–7.35 (m, 2H), 5.75 (dddd, *J* = 17.1, 10.2, 7.7, 7.0 Hz, 1H), 5.19–5.03 (m, 2H), 3.92–3.78 (m, 1H), 3.72 (ddt, *J* = 12.6, 6.4, 6.0, 1.2 Hz, 1H), 2.55 (ddt, *J* = 13.7, 7.0, 1.2 Hz, 1H), 2.29 (ddt, *J* = 13.7, 7.7, 1.1 Hz, 1H), 2.07–1.87 (m, 3H), 1.75–1.60 (m, 1H), 1.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 179.0, 175.3, 136.5, 133.3, 131.3, 128.1, 127.4,

⁷ D. C. Behenna, Y. Liu, T. Yurino, J. Kim, D. E. White, S. C. Virgil, B. M. Stoltz, *Nature Chem.*, **2012**, *4*, 130–133.

118.9, 47.1, 44.0, 43.3, 33.3, 25.1, 19.5; IR (Neat Film NaCl) 3074, 2939, 2870, 1683, 1478, 1449, 1386, 1282, 1151, 919, 726, 695 cm⁻¹; HRMS (MM: ESI-APCI) *m/z* calc'd for $C_{16}H_{20}NO_2$ [M+H]⁺: 258.1489, found 258.1491; $[\alpha]_D^{25}$ –91.2° (c 1.07, CHCl₃, 99% ee).

(*S*)-3-allyl-1-benzoyl-3-methylpiperidine-2,6-dione (6c). Synthesized according to the general method from imide $5c^7$ using 1.25 mol % (*S*)-(CF₃)₃-*t*-BuPHOX and 0.125 mol % Pd(OAc)₂. Product was isolated by column chromatography (SiO₂, 10–20% EtOAc in hexanes) as a colorless oil (99% yield) and matched previously reported characterization data:⁷ $R_f = 0.21$ (25% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 8.29 Hz, 2H), 7.63 (t, J = 7.45 Hz, 1H), 7.48 (dd, J = 8.29, 7.45 Hz, 2H), 5.77 (dddd, J = 17.4, 10.2, 7.4, 7.0 Hz, 1H), 5.22–5.16 (m, 2H), 2.87–2.77 (m, 2H), 2.59 (ddt, J = 13.8, 7.0, 1.0 Hz, 1H), 2.40 (ddt, J = 13.8, 7.4, 1.0 Hz, 1H), 2.12 (ddd, J = 14.2, 7.73, 6.81 Hz, 1H), 1.85 (ddd, J = 14.2, 6.5, 6.1 Hz, 1H), 1.37 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.6, 171.6, 170.9, 134.8, 132.0, 131.9, 130.0, 129.1, 120.0, 41.9, 41.7, 29.2, 28.2, 22.8; IR (Neat Film NaCl) 3077, 2975, 2935, 1750, 1713, 1683, 1450, 1340, 1239, 1198, 981, 776 cm⁻¹; HRMS (MM: ESI-APCI) m/z calc'd for C₁₆H₁₈NO₃[M+H]⁺: 272.1281, found 272.1281; [α]_D²⁵–31.3° (c 1.00, CHCl₃, 94% ee).

(*R*)-3-allyl-1-benzoyl-3-fluoropiperidin-2-one (6d). Synthesized according to the general method from lactam 5d⁷ using 1.25 mol % (*S*)-(CF₃)₃-*t*-BuPHOX and 0.125 mol % Pd(OAc)₂. Product was isolated by column chromatography (SiO₂, 10–20% EtOAc in hexanes) as a colorless oil (80% yield) and matched previously reported characterization data:⁷ $R_f = 0.35$ (35% Et₂O in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.62–7.57 (m, 2H), 7.53–7.47 (m, 1H), 7.44–7.37 (m, 2H), 5.87–5.70 (m, 1H), 5.28–5.15 (m, 2H), 3.91 (dddd, *J* = 12.8, 6.0, 4.7, 1.4 Hz, 1H), 3.74 (dddd, *J* = 13.6, 9.2, 4.5, 2.4 Hz, 1H), 2.86–2.60 (m, 2H), 2.33–2.14 (m, 2H), 2.13–1.89 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 174.5,

170.8 (d, $J_{C-F} = 23.5$ Hz), 135.0, 132.0, 130.6 (d, $J_{C-F} = 6.5$ Hz), 128.3, 128.0, 120.4, 93.9 (d, $J_{C-F} = 179.3$ Hz), 46.4, 40.0 (d, $J_{C-F} = 23.6$ Hz), 32.1 (d, $J_{C-F} = 22.5$ Hz), 19.1 (d, $J_{C-F} = 4.6$ Hz); IR (Neat Film NaCl) 3078, 2956, 1715, 1687, 1478, 1449, 1435, 1390, 1288, 1273, 1175, 1152, 1000, 930, 725, 694, 662 cm⁻¹; HRMS (MM: ESI-APCI) *m*/*z* calc'd for C₁₅H₁₆NO₂F [M+H]⁺: 262.1238, found 262.1244; $[\alpha]_D^{25} -120.6^\circ$ (c 1.09, CHCl₃, 99% ee).

(*S*)-3-allyl-1-(4-methoxybenzoyl)-3-methylazepan-2-one (6e). Synthesized according to the general method from lactam $5e^7$ using 1.25 mol % (*S*)-(CF₃)₃-*t*-BuPHOX and 0.125 mol % Pd(OAc)₂. Product was isolated by column chromatography (SiO₂, 10–20% EtOAc in hexanes) as a colorless oil (95% yield) and matched previously reported characterization data:⁷ $R_f = 0.48$ (25% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.56–7.48 (m, 2H), 6.91–6.82 (m, 2H), 5.86–5.66 (m, 1H), 5.18–5.02 (m, 2H), 4.03 (ddd, J = 15.0, 8.0, 2.4 Hz, 1H), 3.88 (ddd, J = 15.1, 8.5, 2.1 Hz, 1H), 3.83 (s, 3H), 2.50 (ddt, J = 13.6, 7.0, 1.2 Hz, 1H), 2.35 (ddt, J = 13.7, 7.6, 1.1 Hz, 1H), 1.92–1.77 (m, 4H), 1.77–1.62 (m, 2H), 1.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 182.3, 174.7, 162.2, 133.9, 130.0, 128.9, 118.6, 113.5, 55.4, 47.7, 44.7, 43.0, 35.1, 28.2, 25.0, 23.4; IR (Neat Film NaCl) 3074, 2932, 1673, 1605, 1511, 1279, 1255, 1168, 1112, 1025, 837 cm⁻¹; HRMS (MM: ESI-APCI) *m/z* calc'd for C₁₈H₂₄NO₃ [M+H]⁺: 302.1751, found 302.1744; [α]_D²⁵–34.7° (c 0.75, CHCl₃, 93% ee).

Scale Up Procedures

(S)-2-allyl-2-methyl-cyclohexanone (2a). An oven-dried 250 mL round-bottom flask equipped with a magnetic stir bar was fitted with a rubber septum and cooled to room temperature under an atmosphere of argon. To the flask were added $Pd(OAc)_2$ (3.37 mg, 15 µmol, 0.150 mol %) and (S)-*t*-

BuPHOX (58 mg, 150 μ mol, 1.50 mol %). The flask was evacuated and backfilled with argon three times. TBME (90 mL) was added to the flask and the mixture was stirred for 30 min in a 40 °C oil bath. Substrate **1a** (1.96 g, 10.0 mmol, 1.0 equiv) was taken up in TBME (10 mL) and added to the stirring catalyst solution. The reaction was stirred for 16 h at 60 °C, the reaction mixture was passed through a pad of silica gel (2 cm diameter x 3 cm height) and rinsed with diethyl ether (50 mL). The filtrate was concentrated in vacuo and the remaining oil was distilled through a short path apparatus (bp. 91–93 °C/16 mmHg) into a receiving flask immersed in an ice water bath to yield product **2a** as a pale yellow oil (1.45 g, 9.50 mmol, 95% yield). The product was determined to be in 89% ee by chiral GC and matched previously reported characterization data (*vide supra*).³

(*S*)-2-allyl-2-methyl-3,4-dihydronaphthalen-1(2*H*)-one (2b). An oven-dried 500 mL round-bottom flask equipped with a magnetic stir bar was fitted with a rubber septum and cooled to room temperature under an atmosphere of argon. To the flask were added $Pd(OAc)_2$ (5.6 mg, 25 µmol, 0.125 mol %) and (*S*)-*t*-BuPHOX (97 mg, 250 µmol, 1.25 mol %). The flask was evacuated and backfilled with argon three times. TBME (190 mL) was added to the flask and the mixture was stirred for 30 min in a 40 °C oil bath. Substrate **1b** (4.89 g, 20.0 mmol, 1.0 equiv) was taken up in TBME (10 mL) and added to the stirring catalyst solution. The reaction was stirred for 16 h, concentrated in vacuo and purified by column chromatography (SiO₂, 5–10–20% Et₂O/hexanes) to yield product **2b** as a pale yellow oil (3.81 g, 19.0 mmol, 95% yield). The product was determined to be in 88% ee by chiral SFC and matched previously reported characterization data (*vide supra*).³

entry	product	assay conditions	retention time of major isomer (min)	retention time of minor isomer (min)	% ee
1	0 2a	GC G-TA 100 °C isotherm	15.09	16.31	89
2		SFC Chiralcel OD-H 0.5% <i>i</i> -PrOH in CO ₂ isocratic 3.0 mL/min 254 nm	6.40	6.89	89
3	20	GC G-TA 100 °C isotherm	15.07	16.35	70
4	2d	GC chiral Supelco Beta-Dex-120 followed by chiral Supelco Beta-Dex 110 100–140 °C gradient over 120 min	110.80	111.54	90
5		GC G-TA 100 °C isotherm	67.01	70.18	99
6	BzN 6a	SFC Chiralcel OJ-H 3% MeOH in CO ₂ isocratic 5.0 mL/min 254 nm	3.85	2.49	97
7	BzN 6b	HPLC Chiralcel OJ-H 5% <i>i</i> -PrOH in hexanes isocratic 1.0 mL/min 254 nm	32.97	31.16	95
8	BZN 0 6C	SFC Chiralcel OJ-H 3% MeOH in CO ₂ isocratic 3.0 mL/min 254 nm	5.89	5.20	88
9	BzN F	SFC Chiralcel OJ-H 5% MeOH in CO ₂ isocratic 3.0 mL/min 254 nm	3.83	4.28	99
10		SFC Chiralcel OJ-H 5% <i>i</i> -PrOH in CO ₂ isocratic 3.0 mL/min 254 nm	6.13	5.51	90

Methods for the Determination of Enantiomeric Excess

¹H NMR, ¹³C NMR and IR Spectra шdd 0 N ¹H NMR of compound **2a** (300 MHz, CDCl₃) Э 4 പ g \sim 2a

IR of compound 2a (NaCl/film)

¹³C NMR of compound **2b** (75 MHz, CDCl₃)

Infrared spectrum (Thin Film, NaCl) of compound 2d.

¹³C NMR (101 MHz, CDCl₃) of compound **2d**.

Infrared spectrum (thin film/NaCl) of diketone **2e**.

¹³C NMR (126 MHz, CDCl₃) of diketone **2e**.

Marziale, Duquette, Craig, Kim, Liniger, Numajiri, and Stoltz

Infrared spectrum (Thin Film, NaCl) of compound 6c.

200 180 160 140 120 100 80 60 40 20 0

 ^{13}C NMR (126 MHz, CDCl₃) of compound **6c**.

Infrared spectrum (Thin Film, NaCl) of compound 6d.

 ^{13}C NMR (126 MHz, CDCl_3) of compound 6d.

Marziale, Duquette, Craig, Kim, Liniger, Numajiri, and Stoltz