Synthesis and Exploration of Electronically Modified (*R*)-5,5-Dimethyl-(*p*-CF₃)₃-*i*-PrPHOX in Palladium-Catalyzed Enantio- and Diastereoselective Allylic Alkylation: A Practical Alternative to (*R*)-(*p*-CF₃)₃-*t*-BuPHOX

Robert A. Craig, II and Brian M. Stoltz*

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Boulevard, MC 101-20, Pasadena, CA 91125, USA

Table of Contents

Materials and Methods	S2
Experimental Procedures	
Ligand Synthesis	S3
General Procedure for Intermolecular Asymmetric Allylic Alkylation	S7
General Procedure for Diastereoselective Allylic Alkylation	S9
Notes and References	S10
NMR & IR Spectra	S11

Materials and Methods

Unless stated otherwise, reactions were performed at ambient temperature (23 °C) in flame-dried or oven-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents (distilled or passed over a column of activated alumina)¹ stirring with a Teflon[®]-coated magnetic stirring bar. Commercially available reagents were used as received unless otherwise noted. TBAT was triturated with bench-top EtOAc (25 g batches, 2 x 100 mL washes) under a cone of argon, dried in vacuo (ca. 0.30 torr) for 24 hours, and then stored in a nitrogen-filled glovebox. Et₃N was distilled from calcium hydride immediately prior to use. Purified H₂O was obtained using a Barnstead NANOpure Infinity UV/UF system. 4 Å molecular sieves were oven-dried at 120 °C for a minimum of 24 h and cooled in a desiccator to ambient temperature immediately prior $(S)-(CF_3)_3-t$ -BuPHOX $((S)-L1)^2(S)-t$ -BuPHOX $((S)-L2)^3(S)-5,5$ -diphenyl-*i*to use. PrPHOX ((S)-L3), (R)-5,5-dimethyl-*i*-PrPHOX ((R)-L4), (2)-bromo-5-(trifluoromethyl)benzoyl chloride (11),⁶ (R)-3-amino-2,4-dimethylpentan-2-ol hydrogen chloride (12),^{4,5} $(15)^{6}$ bis(4-(trifluoromethyl)phenyl)phosphine oxide and tris(4.4'methoxydibenzylideneacetone)-dipalladium(0) (Pd₂(pmdba)₃)⁷ were prepared by known methods. Reactions requiring external heat were modulated to the specified temperatures using an IKAmag temperature controller. Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (250 nm) and visualized by UV fluorescence quenching, potassium permanganate, or *p*-anisaldehyde staining. Silicycle SiliaFlash P60 Academic Silica gel (particle size 40-63 nm) was used for flash chromatography. ¹H and ¹³C NMR spectra were recorded on a Varian Inova 500 (500 MHz and 126 MHz, respectively) are reported in terms of chemical shift relative to residual CHCl₃ (in CDCl₃, δ 7.26 and δ 77.16, respectively) or C₆D₅H (in C₆D₆, δ 7.16 and δ 128.06, respectively). ¹⁹F and ³¹P NMR spectra were recorded on a Varian Mercury 300 spectrometer (282 MHz and 121 MHz, respectively) and are reported in terms of absolute chemical shift according to IUPAC standard recommendations from CFCl₃ and H₃PO₄, respectively.⁸ Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Infrared (IR) spectra were recorded on a Perkin Elmer Paragon 1000 Spectrometer and are reported in frequency of absorption (cm⁻¹). Analytical chiral gas chromatography was performed with an Agilent 6850 GC using a G-TA (30 m x 0.25 cm) column (1.0 mL/minute carrier gas flow). High resolution mass spectra (HRMS) were obtained from the Caltech Mass Spectral Facility using a JEOL JMS-600H High Resolution Mass Spectrometer in fast atom bombardment (FAB+) ionization mode or acquired using an Agilent 6200 Series TOF with an Agilent G1978A Multimode source in mixed (MultiMode ESI/APCI) ionization mode. Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path length cell at 589 nm.

Experimental Procedures

Ligand Synthesis

Benzamide 13:⁴ To a stirred solution of the hydrogen chloride salt of aminoalcohol 12 (1.00 g, 5.96 mmol, 1.00 equiv) in p-dioxane (20 mL) was added Et₃N (2.50 mL, 17.9 mmol, 3.00 equiv). The reaction mixture was then cooled to 0 °C (ice/H₂O bath) followed by the addition of acid chloride 11 (1.971 g, 6.86 mmol, 1.15 equiv) as a solution in pdioxane (13 mL) slowly dropwise. After 15 minutes, the reaction was removed from the cooling bath and allowed to warm to ambient temperature (ca. 23 °C). After 4 h, the consumption of starting material was complete as determined by TLC (1:9 MeOH:CH₂Cl₂ eluent). The reaction mixture was concentrated in vacuo, dissolved in Et₂O, and filtered through a pad of silica gel, eluting the product with Et₂O. The filtrate was then concentrated in vacuo and the crude white solid residue was purified by silica gel column chromatography (20% acetone in hexanes eluent) to provide amide 13 (1.79 g, 79% yield) as an amorphous white solid: $R_f = 0.20$ (1:4 Acetone:Hexanes eluent); ¹H NMR (CDCl₃, 500 MHz) δ 7.78–7.71 (m, 2H), 7.52 (ddt, J = 8.3, 2.3, 0.7 Hz, 1H), 6.40 (d, J = 10.3 Hz, 1H), 4.03 (dd, J = 10.1, 2.6 Hz, 1H), 2.27 (dtd, J = 13.7, 6.8, 2.6 Hz, 1H),1.37 (s, 3H), 1.34 (s, 3H), 1.08 (d, J = 6.8 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H); ¹³C NMR $(CDCl_3, 126 \text{ MHz}) \delta 167.0, 139.4, 134.3, 130.4 (q, J = 33.5 \text{ Hz}), 127.7 (q, J = 3.6 \text{ Hz}),$ 126.6 (q, J = 3.8 Hz), 123.5 (q, J = 272.3 Hz), 123.2 (q, J = 1.5 Hz), 73.8, 60.9, 29.9, 28.8, 27.7, 22.5, 17.2; ¹⁹F NMR (CDCl₃, 282 MHz) δ –62.8 (s); IR (Neat Film, NaCl) 3413, 3299, 2964, 1638, 1540, 1332, 1311, 1173, 1132, 1080, 1033, 828 cm⁻¹: HRMS (MM: ESI-APCI) m/z calc'd for C₁₅H₂₀O₂⁷⁹BrF₃N [M+H]⁺: 382.0624, found 382.0633; $[\alpha]_D^{25.0} - 3.9^\circ$ (*c* 0.895, CHCl₃).

Oxazoline 14:⁴

To a solution of amide 13 (1.41 g, 3.70 mmol, 1.00 equiv) in CH₂Cl₂ (93 mL) at 0 °C (ice/H₂O bath) was added methanesulfonic acid (MsOH, 1.44 mL, 22.2 mmol, 6.00 equiv) dropwise over 10 minutes. The flask was subsequently removed from the cooling bath, fitted with a reflux condenser, and introduced to a preheated 50 °C bath. After 17 h, the consumption of starting material was complete as determined by TLC (1:4 Acetone: Hexanes eluent). The refluxing solution was removed from the heating bath and allowed to cool to ambient temperature (ca. 23 °C). The yellow reaction mixture was then diluted with CH₂Cl₂ (100 mL) and poured onto saturated aqueous NaHCO₃ (100 mL). The organics were separated and washed with H_2O (40 mL) and brine (40 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude gold oil was purified by silica gel column chromatography (5% \rightarrow 10% acetone in hexanes eluent) to provide oxazoline 14 (1.18 g, 87% yield) as a pale yellow oil: $R_f = 0.42$ (1:9 Et₂O:Hexanes eluent); ¹H NMR (CDCl₃, 500 MHz) δ 7.92–7.88 (m, 1H), 7.77–7.72 (m, 1H), 7.52–7.46 (m, 1H), 3.53 (d, J = 8.1 Hz, 1H), 1.94 (dhept, J = 8.0, 6.6 Hz, 1H), 1.56 (s, 3H), 1.45 (s, 3H), 1.16 (d, J = 6.5 Hz, 3H), 1.05 (d, J = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 126 MHz) δ 160.4, 134.6, 131.6, 129.8 (q, J = 33.4 Hz), 128.4 (q, J = 3.8 Hz), 127.9 (q, J = 3.6 Hz), 126.1 (q, J = 1.7 Hz), 123.5 (q, J = 272.8 Hz), 88.2, 81.0, 29.4, 29.2, 21.4, 21.3, 20.7; ¹⁹F NMR (CDCl₃, 282 MHz) δ –62.8 (s); IR (Neat Film, NaCl) 2973, 1652, 1608, 1472, 1343, 1306, 1173, 1133, 1077, 1028, 830 cm⁻¹; HRMS (MM: ESI-APCI) *m/z* calc'd for C₁₅H₁₈O⁷⁹BrF₃N [M+H]⁺: 364.0518, found 364.0535; [α]_D^{25.0} +33.1° (*c* 6.050, CHCl₃).

(*R*)-5,5-dimethyl-(p-CF₃)₃-i-PrPHOX ((*R*)-L5):^{2a}

To a multineck reaction vessel fitted with a reflux condenser were added CuI (377 mg, 1.98 mmol, 1.00 equiv) and phosphine oxide **15** (870 mg, 2.57 mmol, 1.30 equiv) as solids. The reaction vessel was then evacuated and backfilled with argon (3 x 5 minute cycles). Toluene (8 mL) was then added and stirring commenced. *N*,*N*'-Dimethylethylenediamine (DMEDA, 0.64 mL, 5.94 mmol, 3.00 equiv) was then added dropwise causing the yellow heterogeneous reaction mixture to become dark green and homogeneous. After 20 minutes, oxazoline **14** (721 mg, 1.98 mmol, 1.00 equiv) was added as a neat oil dropwise followed by Cs₂CO₃ (2.39 g, 7.33 mmol, 3.70 equiv) as a solid in a single portion. The reaction vessel was then introduced to a preheated 110 °C bath. After 20 h, the consumption of starting material was complete as determined by TLC (1:9 Et₂O:Hexanes eluent). The refluxing solution was removed from the heating bath and allowed to cool to ambient temperature (ca. 23 °C). The crude reaction mixture

was concentrated in vacuo and the crude brown solid was purified by silica gel column chromatography ($25\% \rightarrow 50\%$ EtOAc in hexanes eluent) to provide phosphine oxide 16 (778 mg, 63% yield) as an amorphous white solid that was carried directly into the next transformation.

Solid phosphine oxide 16 (778 mg, 1.25 mmol, 1.00 equiv) was added to a sealable pressure vessel, which was then evacuated and backfilled with argon (3 x 5 minute cycles). To the flask was then added Ph₂SiH₂ (1.63 mL, 8.76 mmol, 7.00 equiv) with stirring. The reaction vessel, containing a homogeneous yellow solution, was then sealed and introduced to a preheated 140 °C bath. After 48 h, the consumption of starting material was complete as determined by TLC (1:1 EtOAc:Hexanes eluent). The refluxing solution was removed from the heating bath and allowed to cool to ambient temperature (ca. 23 °C). The crude reaction mixture was directly purified by silica gel column chromatography (20% CH₂Cl₂ in hexanes eluent) to furnish (R)-5,5-dimethyl-(p-CF₃)₃-i-PrPHOX ((R)-(p-CF₃)₃-*i*-PrPHOX^{Me₂}, (R)-L5, 614 mg, 81% yield) as an amorphous white solid: $R_f = 0.27$ (1:4 CH₂Cl₂:Hexanes eluent); ¹H NMR (C₆D₆, 500 MHz) δ 8.57 (dd, J = 3.3, 2.0 Hz, 1H), 7.41-7.36 (m, 4H), 7.21-7.15 (m, 4H), 7.10 (dd, J = 8.2, 2.0)Hz, 1H), 6.78 (dd, J = 8.0, 3.0 Hz, 1H), 3.22 (d, J = 8.4 Hz, 1H), 1.55 (ddt, J = 13.0, 8.3, 6.5 Hz, 1H), 1.21 (s, 3H), 1.08 (s, 3H), 0.99 (d, J = 6.5 Hz, 3H), 0.75 (d, J = 6.5 Hz, 3H); ¹³C NMR (C₆D₆, 126 MHz) δ 159.1 (d, J = 4.0 Hz), 143.5 (t, J = 14.8 Hz), 142.7 (d, J = 30.6 Hz), 134.5 (dd, J = 21.3, 15.7 Hz), 133.7 (d, J = 19.5 Hz), 131.1 (q, J = 33.1 Hz), 131.0 (dq, J = 32.3, 4.4 Hz), 127.1 (q, J = 3.6 Hz), 126.4–126.1 (m), 125.5 (dp, J = 7.5, 3.8 Hz), 124.8 (dq, J = 272.0, 3.3 Hz), 124.4 (q, J = 272.6 Hz), 87.2, 81.7 (d, J = 1.5 Hz), 29.1, 28.8, 21.1, 20.8, 20.8 (d, J = 1.8 Hz); ¹⁹F NMR (C₆D₆, 282 MHz) δ -62.6 (s), -62.9

(s); ³¹P NMR (C₆D₆, 121 MHz) δ –7.1 (s); IR (Neat Film, NaCl) 2974, 1652, 1606, 1397, 1323, 1165, 1128, 1060, 1017, 832, 756 cm⁻¹; HRMS (FAB+) *m/z* calc'd for C₂₉H₂₆OF₉NP [M+H]⁺: 606.1608, found 606.1585; [α]_D^{25.0} +9.5° (*c* 3.200, CHCl₃).

General Procedure for Intermolecular Asymmetric Allylic Alkylation

^a Cost per gram of amino acid from Sigma-Aldrich, accessed 4/30/2015. ^b Enantiomeric excess (*ee*) measured by analytical chiral GC.

Chloroallylketone 19: The procedure for the asymmetric allylic alkylation of enol ether 17 with mesylate 18 was adapted from our previous report.⁹ A 20 mL scintillation vial was soaked in a 20:1 *i*-PrOH:toluene bath saturated with KOH for 12 h, rinsed with deionized H₂O, acetone, and allowed to dry in a 120 °C oven for an additional 12 h. To this oven-dried 20 mL scintillation vial in a nitrogen-filled glovebox were charged

Bu₄NPh₃SiF₂ (TBAT, 216 mg, 0.40 mmol, 1.00 equiv), Pd₂(pmdba)₃ (7 mg, 0.006 mmol, 0.015 equiv), ligand (0.014 mmol, 0.035 equiv), and toluene (8.0 mL). The reaction vessel immediately placed into preheated 35 °C heating block with stirring. After 20 minutes, a yellow-brown solution was observed. Chloroallylmesylate 18 (82 mg, 0.48 mmol, 1.20 equiv) was then added quickly dropwise affording a blue-green solution. After 3 minutes, silvl enol ether 17 (120 mg, 0.40 mmol, 1.00 equiv) was added quickly dropwise. The resultant blue-green reaction mixture was allowed to stir for 20 h, at which time the consumption of starting material was complete as determined by TLC (1:19 Et₂O:Hexanes eluent). The resultant vellow-brown reaction was then allowed to cool to ambient temperature (ca. 23 °C), removed from the glovebox, filtered through a pad of SiO₂ using hexanes as the eluent to remove toluene, at which time separate fractions were collected, eluting with Et₂O, to isolate the semi-volatile reaction products. The filtrate was concentrated in vacuo to a bright yellow oil which was subsequently purified by silica gel column chromatography (1% \rightarrow 3% \rightarrow 5% Et₂O in hexanes eluent) to afford semi-volatile chloroallylketone **19** as a clear, colorless oil. $R_f = 0.41$ (1:19 Et₂O:Pentane eluent); characterization data match those reported in the literature.⁹ The *ee* of each product was determined by analytical chiral GC (G-TA column, 120 °C isotherm, major retention time: 53.209 min, minor retention time: 52.075 min).

General Procedure for Diastereoselective Allylic Alkylation

¹H NMR analysis of the crude reaction mixture and analytical GC analysis

Cyclohexanone 22 and Cyclohexanone 23: The procedure for the asymmetric diastereoselective allylic alkylation of β -ketoester 20 with formate 21 was performed exactly as described in our previous report.¹⁰ The characterization data match those reported in the literature.¹⁰

Notes and References

- 1. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, *Organometallics* **1996**, *15*, 1518-1520.
- (a) McDougal, N. T.; Streuff, J.; Mukherjee, H.; Virgil, S. C.; Stoltz, B. M. *Tetrahedron Lett.* 2010, *51*, 5550–5554. (b) White, D. E.; Stewart, I. C.; Grubbs, R. H.; Stoltz, B. M. *J. Am. Chem. Soc.* 2008, *130*, 810–811. (c) Tani, K.; Behenna, D. C.; McFadden, R. M.; Stoltz, B. M. Org. Lett. 2007, *9*, 2529–2531.
- (a) Krout, M. R.; Mohr, J. T.; Stoltz, B. M. Org. Synth. 2009, 86, 181–193. (b) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044–15045. (c) Peer, M.; de Jong, J. C.; Kiefer, M.; Langer, T.; Rieck, H.; Schell, H.; Sennhenn, P.; Sprinz, J.; Steinhagen, H.; Wiese, B.; Helmchen, G. Tetrahedron 1996, 52, 7547–7583.
- 4. Bélanger, E.; Pouliot, M.-F.; Courtemanche, M.-A.; Paquin, J.-F. J. Org. Chem. **2012**, 77, 317–331.
- 5. Bélanger, E.; Pouliot, M.-F.; Paquin, J.-F. Org. Lett. **2009**, *11*, 2201–2204.
- 6. White, D. E.; Stewart, I. C.; Grubbs, R. H.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 810–811.
- (a) Fairlamb, I. J. S.; Kapdi, A. R.; Lee, A. F. Org. Lett. 2004, 6, 4435–4438. (b) Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organomet. Chem. 1974, 65, 253–266.
- (a) Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.; Granger, P.; Hoffman, R. E.; Zilm, K. W. *Pure Appl. Chem.* 2008, *80*, 59–84. (b) Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.; Goodfellow, R.; Granger, P. *Pure Appl. Chem.* 2001, *73*, 1795–1818.
- Craig, R. A., II; Roizen, J. L.; Smith, R. C.; Jones, A. C.; Stoltz, B. M. Org. Lett. 2012, 14, 5716–5719.
- 10. Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 10626–10629.

Infrared spectrum (Thin Film, NaCl) of compound **13**.

СF З

Infrared spectrum (Thin Film, NaCl) of compound 14.

Infrared spectrum (Thin Film, NaCl) of compound (R)-L5.

